MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprc1 Structured version   Visualization version   GIF version

Theorem opprc1 4825
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 4824. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
2 opprc 4824 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
31, 2nsyl5 159 1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-nul 4254  df-if 4457  df-op 4565
This theorem is referenced by:  snopeqop  5414  epelg  5487  brprcneu  6747  fvprc  6748  fmlafvel  33247  bj-inftyexpidisj  35308  eu2ndop1stv  44504
  Copyright terms: Public domain W3C validator