MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprc1 Structured version   Visualization version   GIF version

Theorem opprc1 4890
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 4889. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
2 opprc 4889 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
31, 2nsyl5 159 1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  c0 4315  cop 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3944  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-op 4628
This theorem is referenced by:  snopeqop  5497  epelg  5572  brprcneu  6872  brprcneuALT  6873  fmlafvel  34894  bj-inftyexpidisj  36592  eu2ndop1stv  46379
  Copyright terms: Public domain W3C validator