MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprc1 Structured version   Visualization version   GIF version

Theorem opprc1 4897
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 4896. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 483 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
2 opprc 4896 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
31, 2nsyl5 159 1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  cop 4634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-op 4635
This theorem is referenced by:  snopeqop  5506  epelg  5581  brprcneu  6881  brprcneuALT  6882  fmlafvel  34371  bj-inftyexpidisj  36086  eu2ndop1stv  45823
  Copyright terms: Public domain W3C validator