Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprc1 | Structured version Visualization version GIF version |
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 4833. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opprc1 | ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | opprc 4833 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
3 | 1, 2 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∅c0 4262 〈cop 4573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-nul 4263 df-if 4466 df-op 4574 |
This theorem is referenced by: snopeqop 5424 epelg 5497 brprcneu 6761 brprcneuALT 6762 fmlafvel 33343 bj-inftyexpidisj 35377 eu2ndop1stv 44585 |
Copyright terms: Public domain | W3C validator |