MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnopss Structured version   Visualization version   GIF version

Theorem dmsnopss 6170
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
dmsnopss dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}

Proof of Theorem dmsnopss
StepHypRef Expression
1 dmsnopg 6169 . . 3 (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = {𝐴})
2 eqimss 4004 . . 3 (dom {⟨𝐴, 𝐵⟩} = {𝐴} → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
31, 2syl 17 . 2 (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
4 opprc2 4859 . . . . . 6 𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
54sneqd 4602 . . . . 5 𝐵 ∈ V → {⟨𝐴, 𝐵⟩} = {∅})
65dmeqd 5865 . . . 4 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = dom {∅})
7 dmsn0 6165 . . . 4 dom {∅} = ∅
86, 7eqtrdi 2789 . . 3 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = ∅)
9 0ss 4360 . . 3 ∅ ⊆ {𝐴}
108, 9eqsstrdi 4002 . 2 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
113, 10pm2.61i 182 1 dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2107  Vcvv 3447  wss 3914  c0 4286  {csn 4590  cop 4596  dom cdm 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-xp 5643  df-dm 5647
This theorem is referenced by:  snopsuppss  8114  strle1  17038  setsres  17058  setscom  17060  setsid  17088  ex-res  29434  bj-fununsn1  35774  mapfzcons1  41087
  Copyright terms: Public domain W3C validator