| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnopss | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopss | ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnopg 6189 | . . 3 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 2 | eqimss 4008 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉} = {𝐴} → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
| 4 | opprc2 4865 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) | |
| 5 | 4 | sneqd 4604 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → {〈𝐴, 𝐵〉} = {∅}) |
| 6 | 5 | dmeqd 5872 | . . . 4 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = dom {∅}) |
| 7 | dmsn0 6185 | . . . 4 ⊢ dom {∅} = ∅ | |
| 8 | 6, 7 | eqtrdi 2781 | . . 3 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = ∅) |
| 9 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ {𝐴} | |
| 10 | 8, 9 | eqsstrdi 3994 | . 2 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
| 11 | 3, 10 | pm2.61i 182 | 1 ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 {csn 4592 〈cop 4598 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 |
| This theorem is referenced by: snopsuppss 8161 strle1 17135 setsres 17155 setscom 17157 setsid 17184 ex-res 30377 bj-fununsn1 37248 mapfzcons1 42712 |
| Copyright terms: Public domain | W3C validator |