MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnopss Structured version   Visualization version   GIF version

Theorem dmsnopss 6207
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
dmsnopss dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}

Proof of Theorem dmsnopss
StepHypRef Expression
1 dmsnopg 6206 . . 3 (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = {𝐴})
2 eqimss 4035 . . 3 (dom {⟨𝐴, 𝐵⟩} = {𝐴} → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
31, 2syl 17 . 2 (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
4 opprc2 4893 . . . . . 6 𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
54sneqd 4635 . . . . 5 𝐵 ∈ V → {⟨𝐴, 𝐵⟩} = {∅})
65dmeqd 5899 . . . 4 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = dom {∅})
7 dmsn0 6202 . . . 4 dom {∅} = ∅
86, 7eqtrdi 2782 . . 3 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = ∅)
9 0ss 4391 . . 3 ∅ ⊆ {𝐴}
108, 9eqsstrdi 4031 . 2 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
113, 10pm2.61i 182 1 dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  Vcvv 3468  wss 3943  c0 4317  {csn 4623  cop 4629  dom cdm 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-dm 5679
This theorem is referenced by:  snopsuppss  8164  strle1  17100  setsres  17120  setscom  17122  setsid  17150  ex-res  30203  bj-fununsn1  36641  mapfzcons1  42030
  Copyright terms: Public domain W3C validator