Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmsnopss | Structured version Visualization version GIF version |
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopss | ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 6116 | . . 3 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
2 | eqimss 3977 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉} = {𝐴} → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
4 | opprc2 4829 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) | |
5 | 4 | sneqd 4573 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → {〈𝐴, 𝐵〉} = {∅}) |
6 | 5 | dmeqd 5814 | . . . 4 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = dom {∅}) |
7 | dmsn0 6112 | . . . 4 ⊢ dom {∅} = ∅ | |
8 | 6, 7 | eqtrdi 2794 | . . 3 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = ∅) |
9 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ {𝐴} | |
10 | 8, 9 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 {csn 4561 〈cop 4567 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 |
This theorem is referenced by: snopsuppss 7995 strle1 16859 setsres 16879 setscom 16881 setsid 16909 ex-res 28805 bj-fununsn1 35424 mapfzcons1 40539 |
Copyright terms: Public domain | W3C validator |