Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmsnopss | Structured version Visualization version GIF version |
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopss | ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 6105 | . . 3 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
2 | eqimss 3973 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉} = {𝐴} → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
4 | opprc2 4826 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) | |
5 | 4 | sneqd 4570 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → {〈𝐴, 𝐵〉} = {∅}) |
6 | 5 | dmeqd 5803 | . . . 4 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = dom {∅}) |
7 | dmsn0 6101 | . . . 4 ⊢ dom {∅} = ∅ | |
8 | 6, 7 | eqtrdi 2795 | . . 3 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = ∅) |
9 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ {𝐴} | |
10 | 8, 9 | eqsstrdi 3971 | . 2 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 {csn 4558 〈cop 4564 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 |
This theorem is referenced by: snopsuppss 7966 strle1 16787 setsres 16807 setscom 16809 setsid 16837 ex-res 28706 bj-fununsn1 35351 mapfzcons1 40455 |
Copyright terms: Public domain | W3C validator |