![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsnopss | Structured version Visualization version GIF version |
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopss | ⊢ dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 6206 | . . 3 ⊢ (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = {𝐴}) | |
2 | eqimss 4035 | . . 3 ⊢ (dom {⟨𝐴, 𝐵⟩} = {𝐴} → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}) |
4 | opprc2 4893 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅) | |
5 | 4 | sneqd 4635 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → {⟨𝐴, 𝐵⟩} = {∅}) |
6 | 5 | dmeqd 5899 | . . . 4 ⊢ (¬ 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = dom {∅}) |
7 | dmsn0 6202 | . . . 4 ⊢ dom {∅} = ∅ | |
8 | 6, 7 | eqtrdi 2782 | . . 3 ⊢ (¬ 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = ∅) |
9 | 0ss 4391 | . . 3 ⊢ ∅ ⊆ {𝐴} | |
10 | 8, 9 | eqsstrdi 4031 | . 2 ⊢ (¬ 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 {csn 4623 ⟨cop 4629 dom cdm 5669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-dm 5679 |
This theorem is referenced by: snopsuppss 8164 strle1 17100 setsres 17120 setscom 17122 setsid 17150 ex-res 30203 bj-fununsn1 36641 mapfzcons1 42030 |
Copyright terms: Public domain | W3C validator |