MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnopss Structured version   Visualization version   GIF version

Theorem dmsnopss 6161
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
dmsnopss dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}

Proof of Theorem dmsnopss
StepHypRef Expression
1 dmsnopg 6160 . . 3 (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = {𝐴})
2 eqimss 3993 . . 3 (dom {⟨𝐴, 𝐵⟩} = {𝐴} → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
31, 2syl 17 . 2 (𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
4 opprc2 4850 . . . . . 6 𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
54sneqd 4588 . . . . 5 𝐵 ∈ V → {⟨𝐴, 𝐵⟩} = {∅})
65dmeqd 5845 . . . 4 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = dom {∅})
7 dmsn0 6156 . . . 4 dom {∅} = ∅
86, 7eqtrdi 2782 . . 3 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} = ∅)
9 0ss 4350 . . 3 ∅ ⊆ {𝐴}
108, 9eqsstrdi 3979 . 2 𝐵 ∈ V → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
113, 10pm2.61i 182 1 dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  c0 4283  {csn 4576  cop 4582  dom cdm 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-dm 5626
This theorem is referenced by:  snopsuppss  8109  strle1  17069  setsres  17089  setscom  17091  setsid  17118  ex-res  30419  bj-fununsn1  37293  mapfzcons1  42756
  Copyright terms: Public domain W3C validator