![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsnopss | Structured version Visualization version GIF version |
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopss | ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 5821 | . . 3 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
2 | eqimss 3851 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉} = {𝐴} → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
4 | opprc2 4616 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) | |
5 | 4 | sneqd 4378 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → {〈𝐴, 𝐵〉} = {∅}) |
6 | 5 | dmeqd 5527 | . . . 4 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = dom {∅}) |
7 | dmsn0 5816 | . . . 4 ⊢ dom {∅} = ∅ | |
8 | 6, 7 | syl6eq 2847 | . . 3 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = ∅) |
9 | 0ss 4166 | . . 3 ⊢ ∅ ⊆ {𝐴} | |
10 | 8, 9 | syl6eqss 3849 | . 2 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
11 | 3, 10 | pm2.61i 177 | 1 ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ⊆ wss 3767 ∅c0 4113 {csn 4366 〈cop 4372 dom cdm 5310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-dm 5320 |
This theorem is referenced by: snopsuppss 7545 setsres 16222 setscom 16224 setsid 16235 strle1 16290 ex-res 27817 mapfzcons1 38053 |
Copyright terms: Public domain | W3C validator |