| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnopss | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopss | ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnopg 6165 | . . 3 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 2 | eqimss 3989 | . . 3 ⊢ (dom {〈𝐴, 𝐵〉} = {𝐴} → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
| 4 | opprc2 4849 | . . . . . 6 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) | |
| 5 | 4 | sneqd 4587 | . . . . 5 ⊢ (¬ 𝐵 ∈ V → {〈𝐴, 𝐵〉} = {∅}) |
| 6 | 5 | dmeqd 5849 | . . . 4 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = dom {∅}) |
| 7 | dmsn0 6161 | . . . 4 ⊢ dom {∅} = ∅ | |
| 8 | 6, 7 | eqtrdi 2784 | . . 3 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} = ∅) |
| 9 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ {𝐴} | |
| 10 | 8, 9 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝐵 ∈ V → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
| 11 | 3, 10 | pm2.61i 182 | 1 ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 {csn 4575 〈cop 4581 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 |
| This theorem is referenced by: snopsuppss 8115 strle1 17071 setsres 17091 setscom 17093 setsid 17120 ex-res 30423 bj-fununsn1 37318 mapfzcons1 42835 |
| Copyright terms: Public domain | W3C validator |