| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsn | Structured version Visualization version GIF version | ||
| Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.) |
| Ref | Expression |
|---|---|
| pwsn | ⊢ 𝒫 {𝐴} = {∅, {𝐴}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssn 4773 | . . 3 ⊢ (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) | |
| 2 | 1 | abbii 2798 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} |
| 3 | df-pw 4547 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
| 4 | dfpr2 4592 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
| 5 | 2, 3, 4 | 3eqtr4i 2764 | 1 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 {cab 2709 ⊆ wss 3897 ∅c0 4278 𝒫 cpw 4545 {csn 4571 {cpr 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-pw 4547 df-sn 4572 df-pr 4574 |
| This theorem is referenced by: pmtrsn 19426 topsn 22841 conncompid 23341 lfuhgr1v0e 29227 esumsnf 34069 cvmlift2lem9 35347 rrxtopn0b 46334 sge0sn 46417 |
| Copyright terms: Public domain | W3C validator |