| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsn | Structured version Visualization version GIF version | ||
| Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.) |
| Ref | Expression |
|---|---|
| pwsn | ⊢ 𝒫 {𝐴} = {∅, {𝐴}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssn 4806 | . . 3 ⊢ (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) | |
| 2 | 1 | abbii 2801 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} |
| 3 | df-pw 4582 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
| 4 | dfpr2 4626 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
| 5 | 2, 3, 4 | 3eqtr4i 2767 | 1 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1539 {cab 2712 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-pw 4582 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: pmtrsn 19505 topsn 22885 conncompid 23385 lfuhgr1v0e 29199 esumsnf 34024 cvmlift2lem9 35275 rrxtopn0b 46268 sge0sn 46351 |
| Copyright terms: Public domain | W3C validator |