![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsn | Structured version Visualization version GIF version |
Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.) |
Ref | Expression |
---|---|
pwsn | ⊢ 𝒫 {𝐴} = {∅, {𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn 4831 | . . 3 ⊢ (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) | |
2 | 1 | abbii 2795 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} |
3 | df-pw 4606 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
4 | dfpr2 4650 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
5 | 2, 3, 4 | 3eqtr4i 2763 | 1 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 845 = wceq 1533 {cab 2702 ⊆ wss 3944 ∅c0 4322 𝒫 cpw 4604 {csn 4630 {cpr 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-pw 4606 df-sn 4631 df-pr 4633 |
This theorem is referenced by: pmtrsn 19491 topsn 22882 conncompid 23384 lfuhgr1v0e 29144 esumsnf 33816 cvmlift2lem9 35054 rrxtopn0b 45824 sge0sn 45907 |
Copyright terms: Public domain | W3C validator |