MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsn Structured version   Visualization version   GIF version

Theorem pwsn 4924
Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.)
Assertion
Ref Expression
pwsn 𝒫 {𝐴} = {∅, {𝐴}}

Proof of Theorem pwsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sssn 4851 . . 3 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
21abbii 2812 . 2 {𝑥𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
3 df-pw 4624 . 2 𝒫 {𝐴} = {𝑥𝑥 ⊆ {𝐴}}
4 dfpr2 4668 . 2 {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
52, 3, 43eqtr4i 2778 1 𝒫 {𝐴} = {∅, {𝐴}}
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1537  {cab 2717  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651
This theorem is referenced by:  pmtrsn  19561  topsn  22958  conncompid  23460  lfuhgr1v0e  29289  esumsnf  34028  cvmlift2lem9  35279  rrxtopn0b  46217  sge0sn  46300
  Copyright terms: Public domain W3C validator