Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwsn | Structured version Visualization version GIF version |
Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.) |
Ref | Expression |
---|---|
pwsn | ⊢ 𝒫 {𝐴} = {∅, {𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn 4759 | . . 3 ⊢ (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) | |
2 | 1 | abbii 2808 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} |
3 | df-pw 4535 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
4 | dfpr2 4580 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1539 {cab 2715 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 |
This theorem is referenced by: pmtrsn 19127 topsn 22080 conncompid 22582 lfuhgr1v0e 27621 esumsnf 32032 cvmlift2lem9 33273 rrxtopn0b 43837 sge0sn 43917 |
Copyright terms: Public domain | W3C validator |