MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsn Structured version   Visualization version   GIF version

Theorem pwsn 4844
Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.)
Assertion
Ref Expression
pwsn 𝒫 {𝐴} = {∅, {𝐴}}

Proof of Theorem pwsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sssn 4773 . . 3 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
21abbii 2806 . 2 {𝑥𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
3 df-pw 4549 . 2 𝒫 {𝐴} = {𝑥𝑥 ⊆ {𝐴}}
4 dfpr2 4592 . 2 {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
52, 3, 43eqtr4i 2774 1 𝒫 {𝐴} = {∅, {𝐴}}
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1540  {cab 2713  wss 3898  c0 4269  𝒫 cpw 4547  {csn 4573  {cpr 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-pw 4549  df-sn 4574  df-pr 4576
This theorem is referenced by:  pmtrsn  19223  topsn  22186  conncompid  22688  lfuhgr1v0e  27910  esumsnf  32330  cvmlift2lem9  33572  rrxtopn0b  44181  sge0sn  44262
  Copyright terms: Public domain W3C validator