MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsn Structured version   Visualization version   GIF version

Theorem pwsn 4847
Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.)
Assertion
Ref Expression
pwsn 𝒫 {𝐴} = {∅, {𝐴}}

Proof of Theorem pwsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sssn 4773 . . 3 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
21abbii 2798 . 2 {𝑥𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
3 df-pw 4547 . 2 𝒫 {𝐴} = {𝑥𝑥 ⊆ {𝐴}}
4 dfpr2 4592 . 2 {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
52, 3, 43eqtr4i 2764 1 𝒫 {𝐴} = {∅, {𝐴}}
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1541  {cab 2709  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571  {cpr 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-pw 4547  df-sn 4572  df-pr 4574
This theorem is referenced by:  pmtrsn  19426  topsn  22841  conncompid  23341  lfuhgr1v0e  29227  esumsnf  34069  cvmlift2lem9  35347  rrxtopn0b  46334  sge0sn  46417
  Copyright terms: Public domain W3C validator