MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth1g Structured version   Visualization version   GIF version

Theorem opth1g 5446
Description: Equality of the first members of equal ordered pairs. Closed form of opth1 5443. (Contributed by AV, 14-Oct-2018.)
Assertion
Ref Expression
opth1g ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶))

Proof of Theorem opth1g
StepHypRef Expression
1 opthg 5445 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
2 simpl 482 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
31, 2biimtrdi 253 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604
This theorem is referenced by:  wrdlen2i  14918  fuco1  49216
  Copyright terms: Public domain W3C validator