|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > opthg2 | Structured version Visualization version GIF version | ||
| Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| opthg2 | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opthg 5481 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
| 2 | eqcom 2743 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) | |
| 3 | eqcom 2743 | . . 3 ⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) | |
| 4 | eqcom 2743 | . . 3 ⊢ (𝐵 = 𝐷 ↔ 𝐷 = 𝐵) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) | 
| 6 | 1, 2, 5 | 3bitr4g 314 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4631 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 | 
| This theorem is referenced by: opth2 5484 brsnop 5526 fliftel 7330 symg2bas 19411 projf1o 45207 | 
| Copyright terms: Public domain | W3C validator |