MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthg2 Structured version   Visualization version   GIF version

Theorem opthg2 5344
Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg2 ((𝐶𝑉𝐷𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthg2
StepHypRef Expression
1 opthg 5342 . 2 ((𝐶𝑉𝐷𝑊) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
2 eqcom 2828 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩)
3 eqcom 2828 . . 3 (𝐴 = 𝐶𝐶 = 𝐴)
4 eqcom 2828 . . 3 (𝐵 = 𝐷𝐷 = 𝐵)
53, 4anbi12i 629 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (𝐶 = 𝐴𝐷 = 𝐵))
61, 2, 53bitr4g 317 1 ((𝐶𝑉𝐷𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  cop 4546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547
This theorem is referenced by:  opth2  5345  fliftel  7036  symg2bas  18499  brsnop  30415  projf1o  41615
  Copyright terms: Public domain W3C validator