![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opthg2 | Structured version Visualization version GIF version |
Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthg2 | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthg 5179 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
2 | eqcom 2785 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) | |
3 | eqcom 2785 | . . 3 ⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) | |
4 | eqcom 2785 | . . 3 ⊢ (𝐵 = 𝐷 ↔ 𝐷 = 𝐵) | |
5 | 3, 4 | anbi12i 620 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
6 | 1, 2, 5 | 3bitr4g 306 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 〈cop 4404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 |
This theorem is referenced by: opth2 5182 fliftel 6833 symg2bas 18212 projf1o 40323 |
Copyright terms: Public domain | W3C validator |