MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdlen2i Structured version   Visualization version   GIF version

Theorem wrdlen2i 14838
Description: Implications of a word of length two. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdlen2i ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))

Proof of Theorem wrdlen2i
StepHypRef Expression
1 c0ex 11156 . . . . . . 7 0 ∈ V
2 1ex 11158 . . . . . . 7 1 ∈ V
31, 2pm3.2i 472 . . . . . 6 (0 ∈ V ∧ 1 ∈ V)
4 simpl 484 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑆𝑉𝑇𝑉))
5 0ne1 12231 . . . . . . 7 0 ≠ 1
65a1i 11 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 0 ≠ 1)
7 fprg 7106 . . . . . 6 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑆𝑉𝑇𝑉) ∧ 0 ≠ 1) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
83, 4, 6, 7mp3an2i 1467 . . . . 5 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
9 fzo0to2pr 13664 . . . . . . . . . . . . . 14 (0..^2) = {0, 1}
109eqcomi 2746 . . . . . . . . . . . . 13 {0, 1} = (0..^2)
1110a1i 11 . . . . . . . . . . . 12 ((𝑆𝑉𝑇𝑉) → {0, 1} = (0..^2))
1211feq2d 6659 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇}))
1312biimpa 478 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇})
14 prssi 4786 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → {𝑆, 𝑇} ⊆ 𝑉)
1514adantr 482 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {𝑆, 𝑇} ⊆ 𝑉)
1613, 15fssd 6691 . . . . . . . . 9 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
1716ex 414 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1817adantr 482 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1918impcom 409 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
20 feq1 6654 . . . . . . . 8 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2120adantl 483 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2221adantl 483 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2319, 22mpbird 257 . . . . 5 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → 𝑊:(0..^2)⟶𝑉)
248, 23mpancom 687 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊:(0..^2)⟶𝑉)
25 iswrdi 14413 . . . 4 (𝑊:(0..^2)⟶𝑉𝑊 ∈ Word 𝑉)
2624, 25syl 17 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊 ∈ Word 𝑉)
27 fveq2 6847 . . . 4 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (♯‘𝑊) = (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}))
285neii 2946 . . . . . . 7 ¬ 0 = 1
29 simpl 484 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → 𝑆𝑉)
30 opth1g 5440 . . . . . . . 8 ((0 ∈ V ∧ 𝑆𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
311, 29, 30sylancr 588 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
3228, 31mtoi 198 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ¬ ⟨0, 𝑆⟩ = ⟨1, 𝑇⟩)
3332neqned 2951 . . . . 5 ((𝑆𝑉𝑇𝑉) → ⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩)
34 opex 5426 . . . . . . 7 ⟨0, 𝑆⟩ ∈ V
35 opex 5426 . . . . . . 7 ⟨1, 𝑇⟩ ∈ V
3634, 35pm3.2i 472 . . . . . 6 (⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V)
37 hashprg 14302 . . . . . 6 ((⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3836, 37mp1i 13 . . . . 5 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3933, 38mpbid 231 . . . 4 ((𝑆𝑉𝑇𝑉) → (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2)
4027, 39sylan9eqr 2799 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (♯‘𝑊) = 2)
415a1i 11 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 0 ≠ 1)
42 fvpr1g 7141 . . . . . . 7 ((0 ∈ V ∧ 𝑆𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
431, 29, 41, 42mp3an2i 1467 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
44 simpr 486 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 𝑇𝑉)
45 fvpr2g 7142 . . . . . . 7 ((1 ∈ V ∧ 𝑇𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
462, 44, 41, 45mp3an2i 1467 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
4743, 46jca 513 . . . . 5 ((𝑆𝑉𝑇𝑉) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
4847adantr 482 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
49 fveq1 6846 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘0) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0))
5049eqeq1d 2739 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘0) = 𝑆 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆))
51 fveq1 6846 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘1) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1))
5251eqeq1d 2739 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘1) = 𝑇 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
5350, 52anbi12d 632 . . . . 5 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5453adantl 483 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5548, 54mpbird 257 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))
5626, 40, 55jca31 516 . 2 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))
5756ex 414 1 ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2944  Vcvv 3448  wss 3915  {cpr 4593  cop 4597  wf 6497  cfv 6501  (class class class)co 7362  0cc0 11058  1c1 11059  2c2 12215  ..^cfzo 13574  chash 14237  Word cword 14409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410
This theorem is referenced by:  wrdlen2  14840  wwlktovfo  14854
  Copyright terms: Public domain W3C validator