MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdlen2i Structured version   Visualization version   GIF version

Theorem wrdlen2i 14070
Description: Implications of a word of length two. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdlen2i ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))

Proof of Theorem wrdlen2i
StepHypRef Expression
1 c0ex 10357 . . . . . . 7 0 ∈ V
2 1ex 10359 . . . . . . 7 1 ∈ V
31, 2pm3.2i 464 . . . . . 6 (0 ∈ V ∧ 1 ∈ V)
4 simpl 476 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑆𝑉𝑇𝑉))
5 0ne1 11429 . . . . . . 7 0 ≠ 1
65a1i 11 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 0 ≠ 1)
7 fprg 6678 . . . . . 6 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑆𝑉𝑇𝑉) ∧ 0 ≠ 1) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
83, 4, 6, 7mp3an2i 1594 . . . . 5 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
9 fzo0to2pr 12855 . . . . . . . . . . . . . 14 (0..^2) = {0, 1}
109eqcomi 2834 . . . . . . . . . . . . 13 {0, 1} = (0..^2)
1110a1i 11 . . . . . . . . . . . 12 ((𝑆𝑉𝑇𝑉) → {0, 1} = (0..^2))
1211feq2d 6268 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇}))
1312biimpa 470 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇})
14 prssi 4572 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → {𝑆, 𝑇} ⊆ 𝑉)
1514adantr 474 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {𝑆, 𝑇} ⊆ 𝑉)
1613, 15fssd 6296 . . . . . . . . 9 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
1716ex 403 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1817adantr 474 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1918impcom 398 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
20 feq1 6263 . . . . . . . 8 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2120adantl 475 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2221adantl 475 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2319, 22mpbird 249 . . . . 5 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → 𝑊:(0..^2)⟶𝑉)
248, 23mpancom 679 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊:(0..^2)⟶𝑉)
25 iswrdi 13585 . . . 4 (𝑊:(0..^2)⟶𝑉𝑊 ∈ Word 𝑉)
2624, 25syl 17 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊 ∈ Word 𝑉)
27 fveq2 6437 . . . 4 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (♯‘𝑊) = (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}))
285neii 3001 . . . . . . 7 ¬ 0 = 1
29 simpl 476 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → 𝑆𝑉)
30 opth1g 5169 . . . . . . . 8 ((0 ∈ V ∧ 𝑆𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
311, 29, 30sylancr 581 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
3228, 31mtoi 191 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ¬ ⟨0, 𝑆⟩ = ⟨1, 𝑇⟩)
3332neqned 3006 . . . . 5 ((𝑆𝑉𝑇𝑉) → ⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩)
34 opex 5155 . . . . . . 7 ⟨0, 𝑆⟩ ∈ V
35 opex 5155 . . . . . . 7 ⟨1, 𝑇⟩ ∈ V
3634, 35pm3.2i 464 . . . . . 6 (⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V)
37 hashprg 13479 . . . . . 6 ((⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3836, 37mp1i 13 . . . . 5 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3933, 38mpbid 224 . . . 4 ((𝑆𝑉𝑇𝑉) → (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2)
4027, 39sylan9eqr 2883 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (♯‘𝑊) = 2)
415a1i 11 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 0 ≠ 1)
42 fvpr1g 6719 . . . . . . 7 ((0 ∈ V ∧ 𝑆𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
431, 29, 41, 42mp3an2i 1594 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
44 simpr 479 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 𝑇𝑉)
45 fvpr2g 6720 . . . . . . 7 ((1 ∈ V ∧ 𝑇𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
462, 44, 41, 45mp3an2i 1594 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
4743, 46jca 507 . . . . 5 ((𝑆𝑉𝑇𝑉) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
4847adantr 474 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
49 fveq1 6436 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘0) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0))
5049eqeq1d 2827 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘0) = 𝑆 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆))
51 fveq1 6436 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘1) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1))
5251eqeq1d 2827 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘1) = 𝑇 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
5350, 52anbi12d 624 . . . . 5 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5453adantl 475 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5548, 54mpbird 249 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))
5626, 40, 55jca31 510 . 2 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))
5756ex 403 1 ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999  Vcvv 3414  wss 3798  {cpr 4401  cop 4405  wf 6123  cfv 6127  (class class class)co 6910  0cc0 10259  1c1 10260  2c2 11413  ..^cfzo 12767  chash 13417  Word cword 13581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-hash 13418  df-word 13582
This theorem is referenced by:  wrdlen2  14072  wwlktovfo  14087
  Copyright terms: Public domain W3C validator