MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdlen2i Structured version   Visualization version   GIF version

Theorem wrdlen2i 14867
Description: Implications of a word of length two. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdlen2i ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))

Proof of Theorem wrdlen2i
StepHypRef Expression
1 c0ex 11128 . . . . . . 7 0 ∈ V
2 1ex 11130 . . . . . . 7 1 ∈ V
31, 2pm3.2i 470 . . . . . 6 (0 ∈ V ∧ 1 ∈ V)
4 simpl 482 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑆𝑉𝑇𝑉))
5 0ne1 12217 . . . . . . 7 0 ≠ 1
65a1i 11 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 0 ≠ 1)
7 fprg 7093 . . . . . 6 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑆𝑉𝑇𝑉) ∧ 0 ≠ 1) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
83, 4, 6, 7mp3an2i 1468 . . . . 5 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
9 fzo0to2pr 13671 . . . . . . . . . . . . . 14 (0..^2) = {0, 1}
109eqcomi 2738 . . . . . . . . . . . . 13 {0, 1} = (0..^2)
1110a1i 11 . . . . . . . . . . . 12 ((𝑆𝑉𝑇𝑉) → {0, 1} = (0..^2))
1211feq2d 6640 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇}))
1312biimpa 476 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇})
14 prssi 4775 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → {𝑆, 𝑇} ⊆ 𝑉)
1514adantr 480 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {𝑆, 𝑇} ⊆ 𝑉)
1613, 15fssd 6673 . . . . . . . . 9 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
1716ex 412 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1817adantr 480 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1918impcom 407 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
20 feq1 6634 . . . . . . . 8 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2120adantl 481 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2221adantl 481 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2319, 22mpbird 257 . . . . 5 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → 𝑊:(0..^2)⟶𝑉)
248, 23mpancom 688 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊:(0..^2)⟶𝑉)
25 iswrdi 14442 . . . 4 (𝑊:(0..^2)⟶𝑉𝑊 ∈ Word 𝑉)
2624, 25syl 17 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊 ∈ Word 𝑉)
27 fveq2 6826 . . . 4 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (♯‘𝑊) = (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}))
285neii 2927 . . . . . . 7 ¬ 0 = 1
29 simpl 482 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → 𝑆𝑉)
30 opth1g 5425 . . . . . . . 8 ((0 ∈ V ∧ 𝑆𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
311, 29, 30sylancr 587 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
3228, 31mtoi 199 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ¬ ⟨0, 𝑆⟩ = ⟨1, 𝑇⟩)
3332neqned 2932 . . . . 5 ((𝑆𝑉𝑇𝑉) → ⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩)
34 opex 5411 . . . . . . 7 ⟨0, 𝑆⟩ ∈ V
35 opex 5411 . . . . . . 7 ⟨1, 𝑇⟩ ∈ V
3634, 35pm3.2i 470 . . . . . 6 (⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V)
37 hashprg 14320 . . . . . 6 ((⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3836, 37mp1i 13 . . . . 5 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3933, 38mpbid 232 . . . 4 ((𝑆𝑉𝑇𝑉) → (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2)
4027, 39sylan9eqr 2786 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (♯‘𝑊) = 2)
415a1i 11 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 0 ≠ 1)
42 fvpr1g 7130 . . . . . . 7 ((0 ∈ V ∧ 𝑆𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
431, 29, 41, 42mp3an2i 1468 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
44 simpr 484 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 𝑇𝑉)
45 fvpr2g 7131 . . . . . . 7 ((1 ∈ V ∧ 𝑇𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
462, 44, 41, 45mp3an2i 1468 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
4743, 46jca 511 . . . . 5 ((𝑆𝑉𝑇𝑉) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
4847adantr 480 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
49 fveq1 6825 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘0) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0))
5049eqeq1d 2731 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘0) = 𝑆 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆))
51 fveq1 6825 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘1) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1))
5251eqeq1d 2731 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘1) = 𝑇 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
5350, 52anbi12d 632 . . . . 5 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5453adantl 481 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5548, 54mpbird 257 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))
5626, 40, 55jca31 514 . 2 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))
5756ex 412 1 ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  wss 3905  {cpr 4581  cop 4585  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  2c2 12201  ..^cfzo 13575  chash 14255  Word cword 14438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439
This theorem is referenced by:  wrdlen2  14869  wwlktovfo  14883
  Copyright terms: Public domain W3C validator