MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdlen2i Structured version   Visualization version   GIF version

Theorem wrdlen2i 14963
Description: Implications of a word of length two. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdlen2i ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))

Proof of Theorem wrdlen2i
StepHypRef Expression
1 c0ex 11237 . . . . . . 7 0 ∈ V
2 1ex 11239 . . . . . . 7 1 ∈ V
31, 2pm3.2i 470 . . . . . 6 (0 ∈ V ∧ 1 ∈ V)
4 simpl 482 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑆𝑉𝑇𝑉))
5 0ne1 12319 . . . . . . 7 0 ≠ 1
65a1i 11 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 0 ≠ 1)
7 fprg 7155 . . . . . 6 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑆𝑉𝑇𝑉) ∧ 0 ≠ 1) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
83, 4, 6, 7mp3an2i 1467 . . . . 5 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
9 fzo0to2pr 13771 . . . . . . . . . . . . . 14 (0..^2) = {0, 1}
109eqcomi 2743 . . . . . . . . . . . . 13 {0, 1} = (0..^2)
1110a1i 11 . . . . . . . . . . . 12 ((𝑆𝑉𝑇𝑉) → {0, 1} = (0..^2))
1211feq2d 6702 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇}))
1312biimpa 476 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇})
14 prssi 4801 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → {𝑆, 𝑇} ⊆ 𝑉)
1514adantr 480 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {𝑆, 𝑇} ⊆ 𝑉)
1613, 15fssd 6733 . . . . . . . . 9 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
1716ex 412 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1817adantr 480 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1918impcom 407 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
20 feq1 6696 . . . . . . . 8 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2120adantl 481 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2221adantl 481 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2319, 22mpbird 257 . . . . 5 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → 𝑊:(0..^2)⟶𝑉)
248, 23mpancom 688 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊:(0..^2)⟶𝑉)
25 iswrdi 14538 . . . 4 (𝑊:(0..^2)⟶𝑉𝑊 ∈ Word 𝑉)
2624, 25syl 17 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊 ∈ Word 𝑉)
27 fveq2 6886 . . . 4 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (♯‘𝑊) = (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}))
285neii 2933 . . . . . . 7 ¬ 0 = 1
29 simpl 482 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → 𝑆𝑉)
30 opth1g 5463 . . . . . . . 8 ((0 ∈ V ∧ 𝑆𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
311, 29, 30sylancr 587 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
3228, 31mtoi 199 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ¬ ⟨0, 𝑆⟩ = ⟨1, 𝑇⟩)
3332neqned 2938 . . . . 5 ((𝑆𝑉𝑇𝑉) → ⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩)
34 opex 5449 . . . . . . 7 ⟨0, 𝑆⟩ ∈ V
35 opex 5449 . . . . . . 7 ⟨1, 𝑇⟩ ∈ V
3634, 35pm3.2i 470 . . . . . 6 (⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V)
37 hashprg 14416 . . . . . 6 ((⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3836, 37mp1i 13 . . . . 5 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3933, 38mpbid 232 . . . 4 ((𝑆𝑉𝑇𝑉) → (♯‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2)
4027, 39sylan9eqr 2791 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (♯‘𝑊) = 2)
415a1i 11 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 0 ≠ 1)
42 fvpr1g 7192 . . . . . . 7 ((0 ∈ V ∧ 𝑆𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
431, 29, 41, 42mp3an2i 1467 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
44 simpr 484 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 𝑇𝑉)
45 fvpr2g 7193 . . . . . . 7 ((1 ∈ V ∧ 𝑇𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
462, 44, 41, 45mp3an2i 1467 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
4743, 46jca 511 . . . . 5 ((𝑆𝑉𝑇𝑉) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
4847adantr 480 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
49 fveq1 6885 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘0) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0))
5049eqeq1d 2736 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘0) = 𝑆 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆))
51 fveq1 6885 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘1) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1))
5251eqeq1d 2736 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘1) = 𝑇 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
5350, 52anbi12d 632 . . . . 5 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5453adantl 481 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5548, 54mpbird 257 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))
5626, 40, 55jca31 514 . 2 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))
5756ex 412 1 ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  wss 3931  {cpr 4608  cop 4612  wf 6537  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138  2c2 12303  ..^cfzo 13676  chash 14351  Word cword 14534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-hash 14352  df-word 14535
This theorem is referenced by:  wrdlen2  14965  wwlktovfo  14979
  Copyright terms: Public domain W3C validator