Step | Hyp | Ref
| Expression |
1 | | df-mpo 7260 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
2 | | df-mpo 7260 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)} |
3 | 1, 2 | eqeq12i 2756 |
. . 3
⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) ↔ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)}) |
4 | | eqoprab2bw 7323 |
. . 3
⊢
({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)} ↔ ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷))) |
5 | | pm5.32 573 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷))) |
6 | 5 | albii 1823 |
. . . . . 6
⊢
(∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) ↔ ∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷))) |
7 | | 19.21v 1943 |
. . . . . 6
⊢
(∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
8 | 6, 7 | bitr3i 276 |
. . . . 5
⊢
(∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
9 | 8 | 2albii 1824 |
. . . 4
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
10 | | r2al 3124 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
11 | 9, 10 | bitr4i 277 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) |
12 | 3, 4, 11 | 3bitri 296 |
. 2
⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) |
13 | | pm13.183 3590 |
. . . . . 6
⊢ (𝐶 ∈ 𝑉 → (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
14 | 13 | ralimi 3086 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
15 | | ralbi 3092 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) → (∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
16 | 14, 15 | syl 17 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → (∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
17 | 16 | ralimi 3086 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
18 | | ralbi 3092 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
19 | 17, 18 | syl 17 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
20 | 12, 19 | bitr4id 289 |
1
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝐷)) |