Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fppr2odd Structured version   Visualization version   GIF version

Theorem fppr2odd 45071
Description: A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fppr2odd (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )

Proof of Theorem fppr2odd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 11976 . . . 4 2 ∈ ℕ
2 fpprel 45068 . . . 4 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2ax-mp 5 . . 3 (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1))
4 eluz4nn 12555 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
54adantr 480 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ ℕ)
6 eluzelz 12521 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
7 zeo2ALTV 45011 . . . . . . . . 9 (𝑋 ∈ ℤ → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
86, 7syl 17 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
98adantr 480 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
109biimprd 247 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Even ))
11 nnennexALTV 45041 . . . . . 6 ((𝑋 ∈ ℕ ∧ 𝑋 ∈ Even ) → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦))
125, 10, 11syl6an 680 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦)))
13 oveq1 7262 . . . . . . . . . . . . . 14 (𝑋 = (2 · 𝑦) → (𝑋 − 1) = ((2 · 𝑦) − 1))
1413oveq2d 7271 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → (2↑(𝑋 − 1)) = (2↑((2 · 𝑦) − 1)))
15 id 22 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → 𝑋 = (2 · 𝑦))
1614, 15oveq12d 7273 . . . . . . . . . . . 12 (𝑋 = (2 · 𝑦) → ((2↑(𝑋 − 1)) mod 𝑋) = ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)))
1716eqeq1d 2740 . . . . . . . . . . 11 (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
1817adantl 481 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
19 2z 12282 . . . . . . . . . . . . . . 15 2 ∈ ℤ
201a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 2 ∈ ℕ)
21 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2220, 21nnmulcld 11956 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ)
23 nnm1nn0 12204 . . . . . . . . . . . . . . . 16 ((2 · 𝑦) ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
25 zexpcl 13725 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑦) − 1) ∈ ℕ0) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2619, 24, 25sylancr 586 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2722nnrpd 12699 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
28 modmuladdim 13562 . . . . . . . . . . . . . 14 (((2↑((2 · 𝑦) − 1)) ∈ ℤ ∧ (2 · 𝑦) ∈ ℝ+) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
2926, 27, 28syl2anc 583 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
3024adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℕ0)
3119, 30, 25sylancr 586 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
3231zcnd 12356 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℂ)
33 zcn 12254 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
3433adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
35 2cnd 11981 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
36 nncn 11911 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3736adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℂ)
3835, 37mulcld 10926 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · 𝑦) ∈ ℂ)
3934, 38mulcld 10926 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) ∈ ℂ)
40 1cnd 10901 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 1 ∈ ℂ)
41 subadd 11154 . . . . . . . . . . . . . . . . 17 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ ((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1))))
42 eqcom 2745 . . . . . . . . . . . . . . . . 17 (((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1)) ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1))
4341, 42bitrdi 286 . . . . . . . . . . . . . . . 16 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
4432, 39, 40, 43syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
45 2cnd 11981 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 2 ∈ ℂ)
4645, 36mulcld 10926 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
47 1cnd 10901 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → 1 ∈ ℂ)
4846, 47subcld 11262 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℂ)
4948adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℂ)
50 npcan1 11330 . . . . . . . . . . . . . . . . . . . . . . 23 (((2 · 𝑦) − 1) ∈ ℂ → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5251eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) = ((((2 · 𝑦) − 1) − 1) + 1))
5352oveq2d 7271 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2↑((((2 · 𝑦) − 1) − 1) + 1)))
54 2t1e2 12066 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
5554eqcomi 2747 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 = (2 · 1)
5655oveq2i 7266 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 · 𝑦) − 2) = ((2 · 𝑦) − (2 · 1))
57 sub1m1 12155 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 · 𝑦) ∈ ℂ → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5838, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5935, 37, 40subdid 11361 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) = ((2 · 𝑦) − (2 · 1)))
6056, 58, 593eqtr4a 2805 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = (2 · (𝑦 − 1)))
61 2nn0 12180 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ0
6261a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℕ0)
63 nnm1nn0 12204 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑦 − 1) ∈ ℕ0)
6562, 64nn0mulcld 12228 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) ∈ ℕ0)
6660, 65eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) ∈ ℕ0)
6735, 66expp1d 13793 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = ((2↑(((2 · 𝑦) − 1) − 1)) · 2))
6835, 66expcld 13792 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℂ)
6968, 35mulcomd 10927 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) · 2) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7067, 69eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7153, 70eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7234, 35, 37mul12d 11114 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) = (2 · (𝑚 · 𝑦)))
7371, 72oveq12d 7273 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7434, 37mulcld 10926 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℂ)
7535, 68, 74subdid 11361 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7675eqcomd 2744 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7773, 76eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7877eqeq1d 2740 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1))
79 zexpcl 13725 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ (((2 · 𝑦) − 1) − 1) ∈ ℕ0) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
8019, 66, 79sylancr 586 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
81 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
82 nnz 12272 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8382adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℤ)
8481, 83zmulcld 12361 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℤ)
8580, 84zsubcld 12360 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ)
86 m2even 44994 . . . . . . . . . . . . . . . . . . 19 (((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
8785, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
88 1oddALTV 45030 . . . . . . . . . . . . . . . . . 18 1 ∈ Odd
89 zneoALTV 45009 . . . . . . . . . . . . . . . . . 18 (((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even ∧ 1 ∈ Odd ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
9087, 88, 89sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
91 eqneqall 2953 . . . . . . . . . . . . . . . . 17 ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1 → 𝑋 ∈ Odd ))
9290, 91syl5com 31 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9378, 92sylbid 239 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9444, 93sylbird 259 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9594rexlimdva 3212 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9629, 95syld 47 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9796adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9897adantr 480 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9918, 98sylbid 239 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd ))
10099ex 412 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
101100rexlimdva 3212 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
102101com23 86 . . . . . 6 (𝑋 ∈ (ℤ‘4) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd )))
103102imp 406 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd ))
10412, 103syld 47 . . . 4 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1051043adant2 1129 . . 3 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1063, 105sylbi 216 . 2 (𝑋 ∈ ( FPPr ‘2) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
107106pm2.18d 127 1 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wrex 3064  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  2c2 11958  4c4 11960  0cn0 12163  cz 12249  cuz 12511  +crp 12659   mod cmo 13517  cexp 13710  cprime 16304   Even ceven 44964   Odd codd 44965   FPPr cfppr 45064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-dvds 15892  df-even 44966  df-odd 44967  df-fppr 45065
This theorem is referenced by:  fpprel2  45081
  Copyright terms: Public domain W3C validator