Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fppr2odd Structured version   Visualization version   GIF version

Theorem fppr2odd 47732
Description: A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fppr2odd (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )

Proof of Theorem fppr2odd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12259 . . . 4 2 ∈ ℕ
2 fpprel 47729 . . . 4 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2ax-mp 5 . . 3 (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1))
4 eluz4nn 12849 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
54adantr 480 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ ℕ)
6 eluzelz 12803 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
7 zeo2ALTV 47672 . . . . . . . . 9 (𝑋 ∈ ℤ → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
86, 7syl 17 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
98adantr 480 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
109biimprd 248 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Even ))
11 nnennexALTV 47702 . . . . . 6 ((𝑋 ∈ ℕ ∧ 𝑋 ∈ Even ) → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦))
125, 10, 11syl6an 684 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦)))
13 oveq1 7394 . . . . . . . . . . . . . 14 (𝑋 = (2 · 𝑦) → (𝑋 − 1) = ((2 · 𝑦) − 1))
1413oveq2d 7403 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → (2↑(𝑋 − 1)) = (2↑((2 · 𝑦) − 1)))
15 id 22 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → 𝑋 = (2 · 𝑦))
1614, 15oveq12d 7405 . . . . . . . . . . . 12 (𝑋 = (2 · 𝑦) → ((2↑(𝑋 − 1)) mod 𝑋) = ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)))
1716eqeq1d 2731 . . . . . . . . . . 11 (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
1817adantl 481 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
19 2z 12565 . . . . . . . . . . . . . . 15 2 ∈ ℤ
201a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 2 ∈ ℕ)
21 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2220, 21nnmulcld 12239 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ)
23 nnm1nn0 12483 . . . . . . . . . . . . . . . 16 ((2 · 𝑦) ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
25 zexpcl 14041 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑦) − 1) ∈ ℕ0) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2619, 24, 25sylancr 587 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2722nnrpd 12993 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
28 modmuladdim 13879 . . . . . . . . . . . . . 14 (((2↑((2 · 𝑦) − 1)) ∈ ℤ ∧ (2 · 𝑦) ∈ ℝ+) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
2926, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
3024adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℕ0)
3119, 30, 25sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
3231zcnd 12639 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℂ)
33 zcn 12534 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
3433adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
35 2cnd 12264 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
36 nncn 12194 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3736adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℂ)
3835, 37mulcld 11194 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · 𝑦) ∈ ℂ)
3934, 38mulcld 11194 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) ∈ ℂ)
40 1cnd 11169 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 1 ∈ ℂ)
41 subadd 11424 . . . . . . . . . . . . . . . . 17 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ ((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1))))
42 eqcom 2736 . . . . . . . . . . . . . . . . 17 (((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1)) ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1))
4341, 42bitrdi 287 . . . . . . . . . . . . . . . 16 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
4432, 39, 40, 43syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
45 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 2 ∈ ℂ)
4645, 36mulcld 11194 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
47 1cnd 11169 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → 1 ∈ ℂ)
4846, 47subcld 11533 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℂ)
4948adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℂ)
50 npcan1 11603 . . . . . . . . . . . . . . . . . . . . . . 23 (((2 · 𝑦) − 1) ∈ ℂ → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5251eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) = ((((2 · 𝑦) − 1) − 1) + 1))
5352oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2↑((((2 · 𝑦) − 1) − 1) + 1)))
54 2t1e2 12344 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
5554eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 = (2 · 1)
5655oveq2i 7398 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 · 𝑦) − 2) = ((2 · 𝑦) − (2 · 1))
57 sub1m1 12434 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 · 𝑦) ∈ ℂ → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5838, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5935, 37, 40subdid 11634 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) = ((2 · 𝑦) − (2 · 1)))
6056, 58, 593eqtr4a 2790 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = (2 · (𝑦 − 1)))
61 2nn0 12459 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ0
6261a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℕ0)
63 nnm1nn0 12483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑦 − 1) ∈ ℕ0)
6562, 64nn0mulcld 12508 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) ∈ ℕ0)
6660, 65eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) ∈ ℕ0)
6735, 66expp1d 14112 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = ((2↑(((2 · 𝑦) − 1) − 1)) · 2))
6835, 66expcld 14111 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℂ)
6968, 35mulcomd 11195 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) · 2) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7067, 69eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7153, 70eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7234, 35, 37mul12d 11383 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) = (2 · (𝑚 · 𝑦)))
7371, 72oveq12d 7405 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7434, 37mulcld 11194 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℂ)
7535, 68, 74subdid 11634 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7675eqcomd 2735 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7773, 76eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7877eqeq1d 2731 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1))
79 zexpcl 14041 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ (((2 · 𝑦) − 1) − 1) ∈ ℕ0) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
8019, 66, 79sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
81 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
82 nnz 12550 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8382adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℤ)
8481, 83zmulcld 12644 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℤ)
8580, 84zsubcld 12643 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ)
86 m2even 47655 . . . . . . . . . . . . . . . . . . 19 (((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
8785, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
88 1oddALTV 47691 . . . . . . . . . . . . . . . . . 18 1 ∈ Odd
89 zneoALTV 47670 . . . . . . . . . . . . . . . . . 18 (((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even ∧ 1 ∈ Odd ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
9087, 88, 89sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
91 eqneqall 2936 . . . . . . . . . . . . . . . . 17 ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1 → 𝑋 ∈ Odd ))
9290, 91syl5com 31 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9378, 92sylbid 240 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9444, 93sylbird 260 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9594rexlimdva 3134 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9629, 95syld 47 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9796adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9897adantr 480 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9918, 98sylbid 240 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd ))
10099ex 412 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
101100rexlimdva 3134 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
102101com23 86 . . . . . 6 (𝑋 ∈ (ℤ‘4) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd )))
103102imp 406 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd ))
10412, 103syld 47 . . . 4 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1051043adant2 1131 . . 3 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1063, 105sylbi 217 . 2 (𝑋 ∈ ( FPPr ‘2) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
107106pm2.18d 127 1 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wrex 3053  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  cn 12186  2c2 12241  4c4 12243  0cn0 12442  cz 12529  cuz 12793  +crp 12951   mod cmo 13831  cexp 14026  cprime 16641   Even ceven 47625   Odd codd 47626   FPPr cfppr 47725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-dvds 16223  df-even 47627  df-odd 47628  df-fppr 47726
This theorem is referenced by:  fpprel2  47742
  Copyright terms: Public domain W3C validator