Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fppr2odd Structured version   Visualization version   GIF version

Theorem fppr2odd 43392
Description: A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fppr2odd (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )

Proof of Theorem fppr2odd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 11560 . . . 4 2 ∈ ℕ
2 fpprel 43389 . . . 4 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2ax-mp 5 . . 3 (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1))
4 eluz4nn 12135 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
54adantr 481 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ ℕ)
6 eluzelz 12103 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
7 zeo2ALTV 43332 . . . . . . . . 9 (𝑋 ∈ ℤ → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
86, 7syl 17 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
98adantr 481 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
109biimprd 249 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Even ))
11 nnennexALTV 43362 . . . . . 6 ((𝑋 ∈ ℕ ∧ 𝑋 ∈ Even ) → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦))
125, 10, 11syl6an 680 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦)))
13 oveq1 7026 . . . . . . . . . . . . . 14 (𝑋 = (2 · 𝑦) → (𝑋 − 1) = ((2 · 𝑦) − 1))
1413oveq2d 7035 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → (2↑(𝑋 − 1)) = (2↑((2 · 𝑦) − 1)))
15 id 22 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → 𝑋 = (2 · 𝑦))
1614, 15oveq12d 7037 . . . . . . . . . . . 12 (𝑋 = (2 · 𝑦) → ((2↑(𝑋 − 1)) mod 𝑋) = ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)))
1716eqeq1d 2796 . . . . . . . . . . 11 (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
1817adantl 482 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
19 2z 11864 . . . . . . . . . . . . . . 15 2 ∈ ℤ
201a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 2 ∈ ℕ)
21 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2220, 21nnmulcld 11540 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ)
23 nnm1nn0 11788 . . . . . . . . . . . . . . . 16 ((2 · 𝑦) ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
25 zexpcl 13294 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑦) − 1) ∈ ℕ0) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2619, 24, 25sylancr 587 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2722nnrpd 12279 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
28 modmuladdim 13132 . . . . . . . . . . . . . 14 (((2↑((2 · 𝑦) − 1)) ∈ ℤ ∧ (2 · 𝑦) ∈ ℝ+) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
2926, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
3024adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℕ0)
3119, 30, 25sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
3231zcnd 11938 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℂ)
33 zcn 11836 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
3433adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
35 2cnd 11565 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
36 nncn 11496 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3736adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℂ)
3835, 37mulcld 10510 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · 𝑦) ∈ ℂ)
3934, 38mulcld 10510 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) ∈ ℂ)
40 1cnd 10485 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 1 ∈ ℂ)
41 subadd 10738 . . . . . . . . . . . . . . . . 17 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ ((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1))))
42 eqcom 2801 . . . . . . . . . . . . . . . . 17 (((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1)) ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1))
4341, 42syl6bb 288 . . . . . . . . . . . . . . . 16 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
4432, 39, 40, 43syl3anc 1364 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
45 2cnd 11565 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 2 ∈ ℂ)
4645, 36mulcld 10510 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
47 1cnd 10485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → 1 ∈ ℂ)
4846, 47subcld 10847 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℂ)
4948adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℂ)
50 npcan1 10915 . . . . . . . . . . . . . . . . . . . . . . 23 (((2 · 𝑦) − 1) ∈ ℂ → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5251eqcomd 2800 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) = ((((2 · 𝑦) − 1) − 1) + 1))
5352oveq2d 7035 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2↑((((2 · 𝑦) − 1) − 1) + 1)))
54 2t1e2 11650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
5554eqcomi 2803 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 = (2 · 1)
5655oveq2i 7030 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 · 𝑦) − 2) = ((2 · 𝑦) − (2 · 1))
57 sub1m1 11739 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 · 𝑦) ∈ ℂ → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5838, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5935, 37, 40subdid 10946 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) = ((2 · 𝑦) − (2 · 1)))
6056, 58, 593eqtr4a 2856 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = (2 · (𝑦 − 1)))
61 2nn0 11764 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ0
6261a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℕ0)
63 nnm1nn0 11788 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
6463adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑦 − 1) ∈ ℕ0)
6562, 64nn0mulcld 11810 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) ∈ ℕ0)
6660, 65eqeltrd 2882 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) ∈ ℕ0)
6735, 66expp1d 13361 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = ((2↑(((2 · 𝑦) − 1) − 1)) · 2))
6835, 66expcld 13360 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℂ)
6968, 35mulcomd 10511 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) · 2) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7067, 69eqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7153, 70eqtrd 2830 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7234, 35, 37mul12d 10698 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) = (2 · (𝑚 · 𝑦)))
7371, 72oveq12d 7037 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7434, 37mulcld 10510 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℂ)
7535, 68, 74subdid 10946 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7675eqcomd 2800 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7773, 76eqtrd 2830 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7877eqeq1d 2796 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1))
79 zexpcl 13294 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ (((2 · 𝑦) − 1) − 1) ∈ ℕ0) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
8019, 66, 79sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
81 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
82 nnz 11854 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8382adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℤ)
8481, 83zmulcld 11943 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℤ)
8580, 84zsubcld 11942 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ)
86 m2even 43315 . . . . . . . . . . . . . . . . . . 19 (((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
8785, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
88 1oddALTV 43351 . . . . . . . . . . . . . . . . . 18 1 ∈ Odd
89 zneoALTV 43330 . . . . . . . . . . . . . . . . . 18 (((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even ∧ 1 ∈ Odd ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
9087, 88, 89sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
91 eqneqall 2994 . . . . . . . . . . . . . . . . 17 ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1 → 𝑋 ∈ Odd ))
9290, 91syl5com 31 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9378, 92sylbid 241 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9444, 93sylbird 261 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9594rexlimdva 3246 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9629, 95syld 47 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9796adantl 482 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9897adantr 481 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9918, 98sylbid 241 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd ))
10099ex 413 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
101100rexlimdva 3246 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
102101com23 86 . . . . . 6 (𝑋 ∈ (ℤ‘4) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd )))
103102imp 407 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd ))
10412, 103syld 47 . . . 4 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1051043adant2 1124 . . 3 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1063, 105sylbi 218 . 2 (𝑋 ∈ ( FPPr ‘2) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
107106pm2.18d 127 1 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2080  wne 2983  wnel 3089  wrex 3105  cfv 6228  (class class class)co 7019  cc 10384  1c1 10387   + caddc 10389   · cmul 10391  cmin 10719  cn 11488  2c2 11542  4c4 11544  0cn0 11747  cz 11831  cuz 12093  +crp 12239   mod cmo 13087  cexp 13279  cprime 15844   Even ceven 43285   Odd codd 43286   FPPr cfppr 43385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-er 8142  df-en 8361  df-dom 8362  df-sdom 8363  df-sup 8755  df-inf 8756  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-n0 11748  df-z 11832  df-uz 12094  df-rp 12240  df-ico 12594  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-dvds 15441  df-even 43287  df-odd 43288  df-fppr 43386
This theorem is referenced by:  fpprel2  43402
  Copyright terms: Public domain W3C validator