Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fppr2odd Structured version   Visualization version   GIF version

Theorem fppr2odd 47655
Description: A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fppr2odd (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )

Proof of Theorem fppr2odd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12336 . . . 4 2 ∈ ℕ
2 fpprel 47652 . . . 4 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2ax-mp 5 . . 3 (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1))
4 eluz4nn 12925 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
54adantr 480 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ ℕ)
6 eluzelz 12885 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℤ)
7 zeo2ALTV 47595 . . . . . . . . 9 (𝑋 ∈ ℤ → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
86, 7syl 17 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
98adantr 480 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (𝑋 ∈ Even ↔ ¬ 𝑋 ∈ Odd ))
109biimprd 248 . . . . . 6 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Even ))
11 nnennexALTV 47625 . . . . . 6 ((𝑋 ∈ ℕ ∧ 𝑋 ∈ Even ) → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦))
125, 10, 11syl6an 684 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → ∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦)))
13 oveq1 7437 . . . . . . . . . . . . . 14 (𝑋 = (2 · 𝑦) → (𝑋 − 1) = ((2 · 𝑦) − 1))
1413oveq2d 7446 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → (2↑(𝑋 − 1)) = (2↑((2 · 𝑦) − 1)))
15 id 22 . . . . . . . . . . . . 13 (𝑋 = (2 · 𝑦) → 𝑋 = (2 · 𝑦))
1614, 15oveq12d 7448 . . . . . . . . . . . 12 (𝑋 = (2 · 𝑦) → ((2↑(𝑋 − 1)) mod 𝑋) = ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)))
1716eqeq1d 2736 . . . . . . . . . . 11 (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
1817adantl 481 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 ↔ ((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1))
19 2z 12646 . . . . . . . . . . . . . . 15 2 ∈ ℤ
201a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 2 ∈ ℕ)
21 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2220, 21nnmulcld 12316 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ)
23 nnm1nn0 12564 . . . . . . . . . . . . . . . 16 ((2 · 𝑦) ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℕ0)
25 zexpcl 14113 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑦) − 1) ∈ ℕ0) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2619, 24, 25sylancr 587 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
2722nnrpd 13072 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
28 modmuladdim 13951 . . . . . . . . . . . . . 14 (((2↑((2 · 𝑦) − 1)) ∈ ℤ ∧ (2 · 𝑦) ∈ ℝ+) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
2926, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → ∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
3024adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℕ0)
3119, 30, 25sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℤ)
3231zcnd 12720 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) ∈ ℂ)
33 zcn 12615 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
3433adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
35 2cnd 12341 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
36 nncn 12271 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3736adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℂ)
3835, 37mulcld 11278 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · 𝑦) ∈ ℂ)
3934, 38mulcld 11278 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) ∈ ℂ)
40 1cnd 11253 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 1 ∈ ℂ)
41 subadd 11508 . . . . . . . . . . . . . . . . 17 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ ((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1))))
42 eqcom 2741 . . . . . . . . . . . . . . . . 17 (((𝑚 · (2 · 𝑦)) + 1) = (2↑((2 · 𝑦) − 1)) ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1))
4341, 42bitrdi 287 . . . . . . . . . . . . . . . 16 (((2↑((2 · 𝑦) − 1)) ∈ ℂ ∧ (𝑚 · (2 · 𝑦)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
4432, 39, 40, 43syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1)))
45 2cnd 12341 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 2 ∈ ℂ)
4645, 36mulcld 11278 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
47 1cnd 11253 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → 1 ∈ ℂ)
4846, 47subcld 11617 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → ((2 · 𝑦) − 1) ∈ ℂ)
4948adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) ∈ ℂ)
50 npcan1 11685 . . . . . . . . . . . . . . . . . . . . . . 23 (((2 · 𝑦) − 1) ∈ ℂ → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((((2 · 𝑦) − 1) − 1) + 1) = ((2 · 𝑦) − 1))
5251eqcomd 2740 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · 𝑦) − 1) = ((((2 · 𝑦) − 1) − 1) + 1))
5352oveq2d 7446 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2↑((((2 · 𝑦) − 1) − 1) + 1)))
54 2t1e2 12426 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · 1) = 2
5554eqcomi 2743 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 = (2 · 1)
5655oveq2i 7441 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 · 𝑦) − 2) = ((2 · 𝑦) − (2 · 1))
57 sub1m1 12515 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 · 𝑦) ∈ ℂ → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5838, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = ((2 · 𝑦) − 2))
5935, 37, 40subdid 11716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) = ((2 · 𝑦) − (2 · 1)))
6056, 58, 593eqtr4a 2800 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) = (2 · (𝑦 − 1)))
61 2nn0 12540 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ0
6261a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 2 ∈ ℕ0)
63 nnm1nn0 12564 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ → (𝑦 − 1) ∈ ℕ0)
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑦 − 1) ∈ ℕ0)
6562, 64nn0mulcld 12589 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · (𝑦 − 1)) ∈ ℕ0)
6660, 65eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2 · 𝑦) − 1) − 1) ∈ ℕ0)
6735, 66expp1d 14183 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = ((2↑(((2 · 𝑦) − 1) − 1)) · 2))
6835, 66expcld 14182 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℂ)
6968, 35mulcomd 11279 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) · 2) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7067, 69eqtrd 2774 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((((2 · 𝑦) − 1) − 1) + 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7153, 70eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑((2 · 𝑦) − 1)) = (2 · (2↑(((2 · 𝑦) − 1) − 1))))
7234, 35, 37mul12d 11467 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · (2 · 𝑦)) = (2 · (𝑚 · 𝑦)))
7371, 72oveq12d 7448 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7434, 37mulcld 11278 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℂ)
7535, 68, 74subdid 11716 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))))
7675eqcomd 2740 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · (2↑(((2 · 𝑦) − 1) − 1))) − (2 · (𝑚 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7773, 76eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))))
7877eqeq1d 2736 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 ↔ (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1))
79 zexpcl 14113 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ (((2 · 𝑦) − 1) − 1) ∈ ℕ0) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
8019, 66, 79sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2↑(((2 · 𝑦) − 1) − 1)) ∈ ℤ)
81 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
82 nnz 12631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8382adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → 𝑦 ∈ ℤ)
8481, 83zmulcld 12725 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑦) ∈ ℤ)
8580, 84zsubcld 12724 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ)
86 m2even 47578 . . . . . . . . . . . . . . . . . . 19 (((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦)) ∈ ℤ → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
8785, 86syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even )
88 1oddALTV 47614 . . . . . . . . . . . . . . . . . 18 1 ∈ Odd
89 zneoALTV 47593 . . . . . . . . . . . . . . . . . 18 (((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ∈ Even ∧ 1 ∈ Odd ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
9087, 88, 89sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1)
91 eqneqall 2948 . . . . . . . . . . . . . . . . 17 ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) ≠ 1 → 𝑋 ∈ Odd ))
9290, 91syl5com 31 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2 · ((2↑(((2 · 𝑦) − 1) − 1)) − (𝑚 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9378, 92sylbid 240 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → (((2↑((2 · 𝑦) − 1)) − (𝑚 · (2 · 𝑦))) = 1 → 𝑋 ∈ Odd ))
9444, 93sylbird 260 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑚 ∈ ℤ) → ((2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9594rexlimdva 3152 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (∃𝑚 ∈ ℤ (2↑((2 · 𝑦) − 1)) = ((𝑚 · (2 · 𝑦)) + 1) → 𝑋 ∈ Odd ))
9629, 95syld 47 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9796adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9897adantr 480 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑((2 · 𝑦) − 1)) mod (2 · 𝑦)) = 1 → 𝑋 ∈ Odd ))
9918, 98sylbid 240 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) ∧ 𝑋 = (2 · 𝑦)) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd ))
10099ex 412 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑦 ∈ ℕ) → (𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
101100rexlimdva 3152 . . . . . . 7 (𝑋 ∈ (ℤ‘4) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → 𝑋 ∈ Odd )))
102101com23 86 . . . . . 6 (𝑋 ∈ (ℤ‘4) → (((2↑(𝑋 − 1)) mod 𝑋) = 1 → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd )))
103102imp 406 . . . . 5 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (∃𝑦 ∈ ℕ 𝑋 = (2 · 𝑦) → 𝑋 ∈ Odd ))
10412, 103syld 47 . . . 4 ((𝑋 ∈ (ℤ‘4) ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1051043adant2 1130 . . 3 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
1063, 105sylbi 217 . 2 (𝑋 ∈ ( FPPr ‘2) → (¬ 𝑋 ∈ Odd → 𝑋 ∈ Odd ))
107106pm2.18d 127 1 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wnel 3043  wrex 3067  cfv 6562  (class class class)co 7430  cc 11150  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489  cn 12263  2c2 12318  4c4 12320  0cn0 12523  cz 12610  cuz 12875  +crp 13031   mod cmo 13905  cexp 14098  cprime 16704   Even ceven 47548   Odd codd 47549   FPPr cfppr 47648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ico 13389  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-dvds 16287  df-even 47550  df-odd 47551  df-fppr 47649
This theorem is referenced by:  fpprel2  47665
  Copyright terms: Public domain W3C validator