MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem8 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem8 27688
Description: Lemma 8 for frgrncvvdeq 27691. This corresponds to statement 2 in [Huneke] p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Revised by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem8 (𝜑𝐴:𝐷1-1𝑁)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝐸   𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥   𝑦,𝐷   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem8
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem4 27684 . 2 (𝜑𝐴:𝐷𝑁)
12 simpr 479 . . 3 ((𝜑𝐴:𝐷𝑁) → 𝐴:𝐷𝑁)
13 ffvelrn 6607 . . . . . . . . 9 ((𝐴:𝐷𝑁𝑢𝐷) → (𝐴𝑢) ∈ 𝑁)
1413ad2ant2lr 756 . . . . . . . 8 (((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) → (𝐴𝑢) ∈ 𝑁)
1514adantr 474 . . . . . . 7 ((((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) ∧ (𝐴𝑢) = (𝐴𝑤)) → (𝐴𝑢) ∈ 𝑁)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem1 27681 . . . . . . . . . . 11 (𝜑𝑋𝑁)
17 preq1 4487 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑢 → {𝑥, 𝑦} = {𝑢, 𝑦})
1817eleq1d 2892 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑢 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑢, 𝑦} ∈ 𝐸))
1918riotabidv 6869 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑢 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
2019cbvmptv 4974 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑢𝐷 ↦ (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
2110, 20eqtri 2850 . . . . . . . . . . . . . . . . 17 𝐴 = (𝑢𝐷 ↦ (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
221, 2, 3, 4, 5, 6, 7, 8, 9, 21frgrncvvdeqlem6 27686 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝐷) → {𝑢, (𝐴𝑢)} ∈ 𝐸)
23 preq1 4487 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → {𝑥, 𝑦} = {𝑤, 𝑦})
2423eleq1d 2892 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑤, 𝑦} ∈ 𝐸))
2524riotabidv 6869 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
2625cbvmptv 4974 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑤𝐷 ↦ (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
2710, 26eqtri 2850 . . . . . . . . . . . . . . . . 17 𝐴 = (𝑤𝐷 ↦ (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
281, 2, 3, 4, 5, 6, 7, 8, 9, 27frgrncvvdeqlem6 27686 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐷) → {𝑤, (𝐴𝑤)} ∈ 𝐸)
2922, 28anim12dan 614 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸))
30 preq2 4488 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑤) = (𝐴𝑢) → {𝑤, (𝐴𝑤)} = {𝑤, (𝐴𝑢)})
3130eleq1d 2892 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑤) = (𝐴𝑢) → ({𝑤, (𝐴𝑤)} ∈ 𝐸 ↔ {𝑤, (𝐴𝑢)} ∈ 𝐸))
3231anbi2d 624 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑤) = (𝐴𝑢) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) ↔ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸)))
3332eqcoms 2834 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑢) = (𝐴𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) ↔ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸)))
3433biimpa 470 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑢) = (𝐴𝑤) ∧ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸)) → ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸))
35 df-ne 3001 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑤 ↔ ¬ 𝑢 = 𝑤)
362, 3frgrnbnb 27675 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ FriendGraph ∧ (𝑢𝐷𝑤𝐷) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
379, 36syl3an1 1208 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑢𝐷𝑤𝐷) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
38373expa 1153 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑢𝐷𝑤𝐷)) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
39 df-nel 3104 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
40 eleq1 2895 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑋𝑁))
4140biimpa 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴𝑢) = 𝑋 ∧ (𝐴𝑢) ∈ 𝑁) → 𝑋𝑁)
4241pm2.24d 149 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴𝑢) = 𝑋 ∧ (𝐴𝑢) ∈ 𝑁) → (¬ 𝑋𝑁𝑢 = 𝑤))
4342expcom 404 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴𝑢) ∈ 𝑁 → ((𝐴𝑢) = 𝑋 → (¬ 𝑋𝑁𝑢 = 𝑤)))
4443com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋𝑁 → ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4539, 44sylbi 209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋𝑁 → ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4645com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑢) = 𝑋 → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4738, 46syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢𝐷𝑤𝐷)) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))
4847expcom 404 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
4948com23 86 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑤 → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5035, 49sylbir 227 . . . . . . . . . . . . . . . . . 18 𝑢 = 𝑤 → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5134, 50syl5com 31 . . . . . . . . . . . . . . . . 17 (((𝐴𝑢) = (𝐴𝑤) ∧ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸)) → (¬ 𝑢 = 𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5251expcom 404 . . . . . . . . . . . . . . . 16 (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5352com24 95 . . . . . . . . . . . . . . 15 (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5429, 53mpcom 38 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5554ex 403 . . . . . . . . . . . . 13 (𝜑 → ((𝑢𝐷𝑤𝐷) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5655com3r 87 . . . . . . . . . . . 12 𝑢 = 𝑤 → (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5756com15 101 . . . . . . . . . . 11 (𝑋𝑁 → (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5816, 57mpcom 38 . . . . . . . . . 10 (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5958expd 406 . . . . . . . . 9 (𝜑 → (𝑢𝐷 → (𝑤𝐷 → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
6059adantr 474 . . . . . . . 8 ((𝜑𝐴:𝐷𝑁) → (𝑢𝐷 → (𝑤𝐷 → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
6160imp42 419 . . . . . . 7 ((((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) ∧ (𝐴𝑢) = (𝐴𝑤)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
6215, 61mpid 44 . . . . . 6 ((((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) ∧ (𝐴𝑢) = (𝐴𝑤)) → (¬ 𝑢 = 𝑤𝑢 = 𝑤))
6362pm2.18d 127 . . . . 5 ((((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) ∧ (𝐴𝑢) = (𝐴𝑤)) → 𝑢 = 𝑤)
6463ex 403 . . . 4 (((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) → ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤))
6564ralrimivva 3181 . . 3 ((𝜑𝐴:𝐷𝑁) → ∀𝑢𝐷𝑤𝐷 ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤))
66 dff13 6768 . . 3 (𝐴:𝐷1-1𝑁 ↔ (𝐴:𝐷𝑁 ∧ ∀𝑢𝐷𝑤𝐷 ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤)))
6712, 65, 66sylanbrc 580 . 2 ((𝜑𝐴:𝐷𝑁) → 𝐴:𝐷1-1𝑁)
6811, 67mpdan 680 1 (𝜑𝐴:𝐷1-1𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 3000  wnel 3103  wral 3118  {cpr 4400  cmpt 4953  wf 6120  1-1wf1 6121  cfv 6124  crio 6866  (class class class)co 6906  Vtxcvtx 26295  Edgcedg 26346   NeighbVtx cnbgr 26630   FriendGraph cfrgr 27638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-card 9079  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-n0 11620  df-xnn0 11692  df-z 11706  df-uz 11970  df-fz 12621  df-hash 13412  df-edg 26347  df-upgr 26381  df-umgr 26382  df-usgr 26451  df-nbgr 26631  df-frgr 27639
This theorem is referenced by:  frgrncvvdeqlem10  27690
  Copyright terms: Public domain W3C validator