MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infssuni Structured version   Visualization version   GIF version

Theorem infssuni 8608
Description: If an infinite set 𝐴 is included in the underlying set of a finite cover 𝐵, then there exists a set of the cover that contains an infinite number of element of 𝐴. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
infssuni ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infssuni
StepHypRef Expression
1 dfral2 3177 . . 3 (∀𝑥𝐵 (𝐴𝑥) ∈ Fin ↔ ¬ ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
2 iunfi 8605 . . . . . . 7 ((𝐵 ∈ Fin ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ Fin) → 𝑥𝐵 (𝐴𝑥) ∈ Fin)
3 iunin2 4855 . . . . . . . . 9 𝑥𝐵 (𝐴𝑥) = (𝐴 𝑥𝐵 𝑥)
43eleq1i 2849 . . . . . . . 8 ( 𝑥𝐵 (𝐴𝑥) ∈ Fin ↔ (𝐴 𝑥𝐵 𝑥) ∈ Fin)
5 uniiun 4844 . . . . . . . . . . . 12 𝐵 = 𝑥𝐵 𝑥
65eqcomi 2780 . . . . . . . . . . 11 𝑥𝐵 𝑥 = 𝐵
76ineq2i 4067 . . . . . . . . . 10 (𝐴 𝑥𝐵 𝑥) = (𝐴 𝐵)
87eleq1i 2849 . . . . . . . . 9 ((𝐴 𝑥𝐵 𝑥) ∈ Fin ↔ (𝐴 𝐵) ∈ Fin)
9 df-ss 3836 . . . . . . . . . . 11 (𝐴 𝐵 ↔ (𝐴 𝐵) = 𝐴)
10 eleq1 2846 . . . . . . . . . . . 12 ((𝐴 𝐵) = 𝐴 → ((𝐴 𝐵) ∈ Fin ↔ 𝐴 ∈ Fin))
11 pm2.24 122 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
1210, 11syl6bi 245 . . . . . . . . . . 11 ((𝐴 𝐵) = 𝐴 → ((𝐴 𝐵) ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
139, 12sylbi 209 . . . . . . . . . 10 (𝐴 𝐵 → ((𝐴 𝐵) ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
1413com12 32 . . . . . . . . 9 ((𝐴 𝐵) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
158, 14sylbi 209 . . . . . . . 8 ((𝐴 𝑥𝐵 𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
164, 15sylbi 209 . . . . . . 7 ( 𝑥𝐵 (𝐴𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
172, 16syl 17 . . . . . 6 ((𝐵 ∈ Fin ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ Fin) → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
1817ex 405 . . . . 5 (𝐵 ∈ Fin → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))))
1918com24 95 . . . 4 (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → (𝐴 𝐵 → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))))
20193imp21 1095 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
211, 20syl5bir 235 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → (¬ ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
2221pm2.18d 127 1 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3081  wrex 3082  cin 3821  wss 3822   cuni 4708   ciun 4788  Fincfn 8304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-en 8305  df-fin 8308
This theorem is referenced by:  bwth  21737
  Copyright terms: Public domain W3C validator