MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitali Structured version   Visualization version   GIF version

Theorem vitali 24786
Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
vitali ( < We ℝ → dom vol ⊊ 𝒫 ℝ)

Proof of Theorem vitali
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑚 𝑛 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10971 . . . 4 ℝ ∈ V
21pwex 5304 . . 3 𝒫 ℝ ∈ V
3 weinxp 5672 . . . . 5 ( < We ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ)
4 unipw 5367 . . . . . 6 𝒫 ℝ = ℝ
5 weeq2 5579 . . . . . 6 ( 𝒫 ℝ = ℝ → (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ))
64, 5ax-mp 5 . . . . 5 (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ)
73, 6bitr4i 277 . . . 4 ( < We ℝ ↔ ( < ∩ (ℝ × ℝ)) We 𝒫 ℝ)
81, 1xpex 7612 . . . . . 6 (ℝ × ℝ) ∈ V
98inex2 5243 . . . . 5 ( < ∩ (ℝ × ℝ)) ∈ V
10 weeq1 5578 . . . . 5 (𝑥 = ( < ∩ (ℝ × ℝ)) → (𝑥 We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We 𝒫 ℝ))
119, 10spcev 3546 . . . 4 (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ → ∃𝑥 𝑥 We 𝒫 ℝ)
127, 11sylbi 216 . . 3 ( < We ℝ → ∃𝑥 𝑥 We 𝒫 ℝ)
13 dfac8c 9798 . . 3 (𝒫 ℝ ∈ V → (∃𝑥 𝑥 We 𝒫 ℝ → ∃𝑓𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
142, 12, 13mpsyl 68 . 2 ( < We ℝ → ∃𝑓𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
15 qex 12710 . . . . . . 7 ℚ ∈ V
1615inex1 5242 . . . . . 6 (ℚ ∩ (-1[,]1)) ∈ V
17 nnrecq 12721 . . . . . . . 8 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℚ)
18 nnrecre 12024 . . . . . . . . 9 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℝ)
19 neg1rr 12097 . . . . . . . . . . 11 -1 ∈ ℝ
2019a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → -1 ∈ ℝ)
21 0re 10986 . . . . . . . . . . 11 0 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → 0 ∈ ℝ)
23 neg1lt0 12099 . . . . . . . . . . . 12 -1 < 0
2419, 21, 23ltleii 11107 . . . . . . . . . . 11 -1 ≤ 0
2524a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → -1 ≤ 0)
26 nnrp 12750 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
2726rpreccld 12791 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℝ+)
2827rpge0d 12785 . . . . . . . . . 10 (𝑥 ∈ ℕ → 0 ≤ (1 / 𝑥))
2920, 22, 18, 25, 28letrd 11141 . . . . . . . . 9 (𝑥 ∈ ℕ → -1 ≤ (1 / 𝑥))
30 nnge1 12010 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 1 ≤ 𝑥)
31 nnre 11989 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
32 nngt0 12013 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 0 < 𝑥)
33 1re 10984 . . . . . . . . . . . . 13 1 ∈ ℝ
34 0lt1 11506 . . . . . . . . . . . . 13 0 < 1
35 lerec 11867 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3633, 34, 35mpanl12 699 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3731, 32, 36syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3830, 37mpbid 231 . . . . . . . . . 10 (𝑥 ∈ ℕ → (1 / 𝑥) ≤ (1 / 1))
39 1div1e1 11674 . . . . . . . . . 10 (1 / 1) = 1
4038, 39breqtrdi 5116 . . . . . . . . 9 (𝑥 ∈ ℕ → (1 / 𝑥) ≤ 1)
4119, 33elicc2i 13154 . . . . . . . . 9 ((1 / 𝑥) ∈ (-1[,]1) ↔ ((1 / 𝑥) ∈ ℝ ∧ -1 ≤ (1 / 𝑥) ∧ (1 / 𝑥) ≤ 1))
4218, 29, 40, 41syl3anbrc 1342 . . . . . . . 8 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ (-1[,]1))
4317, 42elind 4129 . . . . . . 7 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ (ℚ ∩ (-1[,]1)))
44 oveq2 7292 . . . . . . . . 9 ((1 / 𝑥) = (1 / 𝑦) → (1 / (1 / 𝑥)) = (1 / (1 / 𝑦)))
45 nncn 11990 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
46 nnne0 12016 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
4745, 46recrecd 11757 . . . . . . . . . 10 (𝑥 ∈ ℕ → (1 / (1 / 𝑥)) = 𝑥)
48 nncn 11990 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
49 nnne0 12016 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
5048, 49recrecd 11757 . . . . . . . . . 10 (𝑦 ∈ ℕ → (1 / (1 / 𝑦)) = 𝑦)
5147, 50eqeqan12d 2753 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / (1 / 𝑥)) = (1 / (1 / 𝑦)) ↔ 𝑥 = 𝑦))
5244, 51syl5ib 243 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / 𝑥) = (1 / 𝑦) → 𝑥 = 𝑦))
53 oveq2 7292 . . . . . . . 8 (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦))
5452, 53impbid1 224 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / 𝑥) = (1 / 𝑦) ↔ 𝑥 = 𝑦))
5543, 54dom2 8792 . . . . . 6 ((ℚ ∩ (-1[,]1)) ∈ V → ℕ ≼ (ℚ ∩ (-1[,]1)))
5616, 55ax-mp 5 . . . . 5 ℕ ≼ (ℚ ∩ (-1[,]1))
57 inss1 4163 . . . . . . 7 (ℚ ∩ (-1[,]1)) ⊆ ℚ
58 ssdomg 8795 . . . . . . 7 (ℚ ∈ V → ((ℚ ∩ (-1[,]1)) ⊆ ℚ → (ℚ ∩ (-1[,]1)) ≼ ℚ))
5915, 57, 58mp2 9 . . . . . 6 (ℚ ∩ (-1[,]1)) ≼ ℚ
60 qnnen 15931 . . . . . 6 ℚ ≈ ℕ
61 domentr 8808 . . . . . 6 (((ℚ ∩ (-1[,]1)) ≼ ℚ ∧ ℚ ≈ ℕ) → (ℚ ∩ (-1[,]1)) ≼ ℕ)
6259, 60, 61mp2an 689 . . . . 5 (ℚ ∩ (-1[,]1)) ≼ ℕ
63 sbth 8889 . . . . 5 ((ℕ ≼ (ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ≼ ℕ) → ℕ ≈ (ℚ ∩ (-1[,]1)))
6456, 62, 63mp2an 689 . . . 4 ℕ ≈ (ℚ ∩ (-1[,]1))
65 bren 8752 . . . 4 (ℕ ≈ (ℚ ∩ (-1[,]1)) ↔ ∃𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
6664, 65mpbi 229 . . 3 𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))
67 eleq1w 2822 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑎 ∈ (0[,]1) ↔ 𝑥 ∈ (0[,]1)))
68 eleq1w 2822 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 ∈ (0[,]1) ↔ 𝑦 ∈ (0[,]1)))
6967, 68bi2anan9 636 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))))
70 oveq12 7293 . . . . . . . . . . . . 13 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎𝑏) = (𝑥𝑦))
7170eleq1d 2824 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎𝑏) ∈ ℚ ↔ (𝑥𝑦) ∈ ℚ))
7269, 71anbi12d 631 . . . . . . . . . . 11 ((𝑎 = 𝑥𝑏 = 𝑦) → (((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ) ↔ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)))
7372cbvopabv 5148 . . . . . . . . . 10 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
74 eqid 2739 . . . . . . . . . 10 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) = ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})
75 fvex 6796 . . . . . . . . . . . 12 (𝑓𝑐) ∈ V
76 eqid 2739 . . . . . . . . . . . 12 (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) = (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))
7775, 76fnmpti 6585 . . . . . . . . . . 11 (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) Fn ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})
7877a1i 11 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) Fn ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}))
79 neeq1 3007 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅))
80 fveq2 6783 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑓𝑧) = (𝑓𝑤))
81 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤𝑧 = 𝑤)
8280, 81eleq12d 2834 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑤) ∈ 𝑤))
8379, 82imbi12d 345 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
8483cbvralvw 3384 . . . . . . . . . . . . 13 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
8573vitalilem1 24781 . . . . . . . . . . . . . . . . . 18 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} Er (0[,]1)
8685a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} Er (0[,]1))
8786qsss 8576 . . . . . . . . . . . . . . . 16 (⊤ → ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 (0[,]1))
8887mptru 1546 . . . . . . . . . . . . . . 15 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 (0[,]1)
89 unitssre 13240 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
9089sspwi 4548 . . . . . . . . . . . . . . 15 𝒫 (0[,]1) ⊆ 𝒫 ℝ
9188, 90sstri 3931 . . . . . . . . . . . . . 14 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 ℝ
92 ssralv 3988 . . . . . . . . . . . . . 14 (((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 ℝ → (∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
9391, 92ax-mp 5 . . . . . . . . . . . . 13 (∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
9484, 93sylbi 216 . . . . . . . . . . . 12 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
95 fveq2 6783 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑤 → (𝑓𝑐) = (𝑓𝑤))
96 fvex 6796 . . . . . . . . . . . . . . . 16 (𝑓𝑤) ∈ V
9795, 76, 96fvmpt 6884 . . . . . . . . . . . . . . 15 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) = (𝑓𝑤))
9897eleq1d 2824 . . . . . . . . . . . . . 14 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → (((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤 ↔ (𝑓𝑤) ∈ 𝑤))
9998imbi2d 341 . . . . . . . . . . . . 13 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → ((𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤) ↔ (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
10099ralbiia 3092 . . . . . . . . . . . 12 (∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤) ↔ ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
10194, 100sylibr 233 . . . . . . . . . . 11 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤))
102101ad2antlr 724 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤))
103 simprl 768 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
104 oveq1 7291 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 − (𝑔𝑚)) = (𝑠 − (𝑔𝑚)))
105104eleq1d 2824 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ↔ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))))
106105cbvrabv 3427 . . . . . . . . . . . 12 {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))}
107 fveq2 6783 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
108107oveq2d 7300 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑠 − (𝑔𝑚)) = (𝑠 − (𝑔𝑛)))
109108eleq1d 2824 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ↔ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))))
110109rabbidv 3415 . . . . . . . . . . . 12 (𝑚 = 𝑛 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
111106, 110eqtrid 2791 . . . . . . . . . . 11 (𝑚 = 𝑛 → {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
112111cbvmptv 5188 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))}) = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
113 simprr 770 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
11473, 74, 78, 102, 103, 112, 113vitalilem5 24785 . . . . . . . . 9 ¬ (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol)))
115114pm2.21i 119 . . . . . . . 8 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
116115expr 457 . . . . . . 7 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → (¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol)))
117116pm2.18d 127 . . . . . 6 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
118 eldif 3898 . . . . . . 7 (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol))
119 mblss 24704 . . . . . . . . . 10 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
120 velpw 4539 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
121119, 120sylibr 233 . . . . . . . . 9 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
122121ssriv 3926 . . . . . . . 8 dom vol ⊆ 𝒫 ℝ
123 ssnelpss 4047 . . . . . . . 8 (dom vol ⊆ 𝒫 ℝ → ((ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol) → dom vol ⊊ 𝒫 ℝ))
124122, 123ax-mp 5 . . . . . . 7 ((ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol) → dom vol ⊊ 𝒫 ℝ)
125118, 124sylbi 216 . . . . . 6 (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) → dom vol ⊊ 𝒫 ℝ)
126117, 125syl 17 . . . . 5 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → dom vol ⊊ 𝒫 ℝ)
127126ex 413 . . . 4 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → dom vol ⊊ 𝒫 ℝ))
128127exlimdv 1937 . . 3 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (∃𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → dom vol ⊊ 𝒫 ℝ))
12966, 128mpi 20 . 2 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → dom vol ⊊ 𝒫 ℝ)
13014, 129exlimddv 1939 1 ( < We ℝ → dom vol ⊊ 𝒫 ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wtru 1540  wex 1782  wcel 2107  wne 2944  wral 3065  {crab 3069  Vcvv 3433  cdif 3885  cin 3887  wss 3888  wpss 3889  c0 4257  𝒫 cpw 4534   cuni 4840   class class class wbr 5075  {copab 5137  cmpt 5158   We wwe 5544   × cxp 5588  dom cdm 5590  ran crn 5591   Fn wfn 6432  1-1-ontowf1o 6436  cfv 6437  (class class class)co 7284   Er wer 8504   / cqs 8506  cen 8739  cdom 8740  cr 10879  0cc0 10880  1c1 10881   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  cn 11982  cq 12697  [,]cicc 13091  volcvol 24636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cc 10200  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-oadd 8310  df-omul 8311  df-er 8507  df-ec 8509  df-qs 8513  df-map 8626  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-acn 9709  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-rlim 15207  df-sum 15407  df-rest 17142  df-topgen 17163  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-top 22052  df-topon 22069  df-bases 22105  df-cmp 22547  df-ovol 24637  df-vol 24638
This theorem is referenced by:  vitali2  44239
  Copyright terms: Public domain W3C validator