MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitali Structured version   Visualization version   GIF version

Theorem vitali 24208
Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
vitali ( < We ℝ → dom vol ⊊ 𝒫 ℝ)

Proof of Theorem vitali
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑚 𝑛 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10622 . . . 4 ℝ ∈ V
21pwex 5273 . . 3 𝒫 ℝ ∈ V
3 weinxp 5630 . . . . 5 ( < We ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ)
4 unipw 5334 . . . . . 6 𝒫 ℝ = ℝ
5 weeq2 5538 . . . . . 6 ( 𝒫 ℝ = ℝ → (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ))
64, 5ax-mp 5 . . . . 5 (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ)
73, 6bitr4i 280 . . . 4 ( < We ℝ ↔ ( < ∩ (ℝ × ℝ)) We 𝒫 ℝ)
81, 1xpex 7470 . . . . . 6 (ℝ × ℝ) ∈ V
98inex2 5214 . . . . 5 ( < ∩ (ℝ × ℝ)) ∈ V
10 weeq1 5537 . . . . 5 (𝑥 = ( < ∩ (ℝ × ℝ)) → (𝑥 We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We 𝒫 ℝ))
119, 10spcev 3606 . . . 4 (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ → ∃𝑥 𝑥 We 𝒫 ℝ)
127, 11sylbi 219 . . 3 ( < We ℝ → ∃𝑥 𝑥 We 𝒫 ℝ)
13 dfac8c 9453 . . 3 (𝒫 ℝ ∈ V → (∃𝑥 𝑥 We 𝒫 ℝ → ∃𝑓𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
142, 12, 13mpsyl 68 . 2 ( < We ℝ → ∃𝑓𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
15 qex 12354 . . . . . . 7 ℚ ∈ V
1615inex1 5213 . . . . . 6 (ℚ ∩ (-1[,]1)) ∈ V
17 nnrecq 12365 . . . . . . . 8 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℚ)
18 nnrecre 11673 . . . . . . . . 9 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℝ)
19 neg1rr 11746 . . . . . . . . . . 11 -1 ∈ ℝ
2019a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → -1 ∈ ℝ)
21 0re 10637 . . . . . . . . . . 11 0 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → 0 ∈ ℝ)
23 neg1lt0 11748 . . . . . . . . . . . 12 -1 < 0
2419, 21, 23ltleii 10757 . . . . . . . . . . 11 -1 ≤ 0
2524a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → -1 ≤ 0)
26 nnrp 12394 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
2726rpreccld 12435 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℝ+)
2827rpge0d 12429 . . . . . . . . . 10 (𝑥 ∈ ℕ → 0 ≤ (1 / 𝑥))
2920, 22, 18, 25, 28letrd 10791 . . . . . . . . 9 (𝑥 ∈ ℕ → -1 ≤ (1 / 𝑥))
30 nnge1 11659 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 1 ≤ 𝑥)
31 nnre 11639 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
32 nngt0 11662 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 0 < 𝑥)
33 1re 10635 . . . . . . . . . . . . 13 1 ∈ ℝ
34 0lt1 11156 . . . . . . . . . . . . 13 0 < 1
35 lerec 11517 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3633, 34, 35mpanl12 700 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3731, 32, 36syl2anc 586 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3830, 37mpbid 234 . . . . . . . . . 10 (𝑥 ∈ ℕ → (1 / 𝑥) ≤ (1 / 1))
39 1div1e1 11324 . . . . . . . . . 10 (1 / 1) = 1
4038, 39breqtrdi 5099 . . . . . . . . 9 (𝑥 ∈ ℕ → (1 / 𝑥) ≤ 1)
4119, 33elicc2i 12796 . . . . . . . . 9 ((1 / 𝑥) ∈ (-1[,]1) ↔ ((1 / 𝑥) ∈ ℝ ∧ -1 ≤ (1 / 𝑥) ∧ (1 / 𝑥) ≤ 1))
4218, 29, 40, 41syl3anbrc 1339 . . . . . . . 8 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ (-1[,]1))
4317, 42elind 4170 . . . . . . 7 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ (ℚ ∩ (-1[,]1)))
44 oveq2 7158 . . . . . . . . 9 ((1 / 𝑥) = (1 / 𝑦) → (1 / (1 / 𝑥)) = (1 / (1 / 𝑦)))
45 nncn 11640 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
46 nnne0 11665 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
4745, 46recrecd 11407 . . . . . . . . . 10 (𝑥 ∈ ℕ → (1 / (1 / 𝑥)) = 𝑥)
48 nncn 11640 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
49 nnne0 11665 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
5048, 49recrecd 11407 . . . . . . . . . 10 (𝑦 ∈ ℕ → (1 / (1 / 𝑦)) = 𝑦)
5147, 50eqeqan12d 2838 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / (1 / 𝑥)) = (1 / (1 / 𝑦)) ↔ 𝑥 = 𝑦))
5244, 51syl5ib 246 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / 𝑥) = (1 / 𝑦) → 𝑥 = 𝑦))
53 oveq2 7158 . . . . . . . 8 (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦))
5452, 53impbid1 227 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / 𝑥) = (1 / 𝑦) ↔ 𝑥 = 𝑦))
5543, 54dom2 8546 . . . . . 6 ((ℚ ∩ (-1[,]1)) ∈ V → ℕ ≼ (ℚ ∩ (-1[,]1)))
5616, 55ax-mp 5 . . . . 5 ℕ ≼ (ℚ ∩ (-1[,]1))
57 inss1 4204 . . . . . . 7 (ℚ ∩ (-1[,]1)) ⊆ ℚ
58 ssdomg 8549 . . . . . . 7 (ℚ ∈ V → ((ℚ ∩ (-1[,]1)) ⊆ ℚ → (ℚ ∩ (-1[,]1)) ≼ ℚ))
5915, 57, 58mp2 9 . . . . . 6 (ℚ ∩ (-1[,]1)) ≼ ℚ
60 qnnen 15560 . . . . . 6 ℚ ≈ ℕ
61 domentr 8562 . . . . . 6 (((ℚ ∩ (-1[,]1)) ≼ ℚ ∧ ℚ ≈ ℕ) → (ℚ ∩ (-1[,]1)) ≼ ℕ)
6259, 60, 61mp2an 690 . . . . 5 (ℚ ∩ (-1[,]1)) ≼ ℕ
63 sbth 8631 . . . . 5 ((ℕ ≼ (ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ≼ ℕ) → ℕ ≈ (ℚ ∩ (-1[,]1)))
6456, 62, 63mp2an 690 . . . 4 ℕ ≈ (ℚ ∩ (-1[,]1))
65 bren 8512 . . . 4 (ℕ ≈ (ℚ ∩ (-1[,]1)) ↔ ∃𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
6664, 65mpbi 232 . . 3 𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))
67 eleq1w 2895 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑎 ∈ (0[,]1) ↔ 𝑥 ∈ (0[,]1)))
68 eleq1w 2895 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 ∈ (0[,]1) ↔ 𝑦 ∈ (0[,]1)))
6967, 68bi2anan9 637 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))))
70 oveq12 7159 . . . . . . . . . . . . 13 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎𝑏) = (𝑥𝑦))
7170eleq1d 2897 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎𝑏) ∈ ℚ ↔ (𝑥𝑦) ∈ ℚ))
7269, 71anbi12d 632 . . . . . . . . . . 11 ((𝑎 = 𝑥𝑏 = 𝑦) → (((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ) ↔ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)))
7372cbvopabv 5130 . . . . . . . . . 10 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
74 eqid 2821 . . . . . . . . . 10 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) = ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})
75 fvex 6677 . . . . . . . . . . . 12 (𝑓𝑐) ∈ V
76 eqid 2821 . . . . . . . . . . . 12 (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) = (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))
7775, 76fnmpti 6485 . . . . . . . . . . 11 (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) Fn ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})
7877a1i 11 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) Fn ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}))
79 neeq1 3078 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅))
80 fveq2 6664 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑓𝑧) = (𝑓𝑤))
81 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤𝑧 = 𝑤)
8280, 81eleq12d 2907 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑤) ∈ 𝑤))
8379, 82imbi12d 347 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
8483cbvralvw 3449 . . . . . . . . . . . . 13 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
8573vitalilem1 24203 . . . . . . . . . . . . . . . . . 18 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} Er (0[,]1)
8685a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} Er (0[,]1))
8786qsss 8352 . . . . . . . . . . . . . . . 16 (⊤ → ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 (0[,]1))
8887mptru 1540 . . . . . . . . . . . . . . 15 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 (0[,]1)
89 unitssre 12879 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
90 sspwb 5333 . . . . . . . . . . . . . . . 16 ((0[,]1) ⊆ ℝ ↔ 𝒫 (0[,]1) ⊆ 𝒫 ℝ)
9189, 90mpbi 232 . . . . . . . . . . . . . . 15 𝒫 (0[,]1) ⊆ 𝒫 ℝ
9288, 91sstri 3975 . . . . . . . . . . . . . 14 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 ℝ
93 ssralv 4032 . . . . . . . . . . . . . 14 (((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 ℝ → (∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
9492, 93ax-mp 5 . . . . . . . . . . . . 13 (∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
9584, 94sylbi 219 . . . . . . . . . . . 12 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
96 fveq2 6664 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑤 → (𝑓𝑐) = (𝑓𝑤))
97 fvex 6677 . . . . . . . . . . . . . . . 16 (𝑓𝑤) ∈ V
9896, 76, 97fvmpt 6762 . . . . . . . . . . . . . . 15 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) = (𝑓𝑤))
9998eleq1d 2897 . . . . . . . . . . . . . 14 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → (((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤 ↔ (𝑓𝑤) ∈ 𝑤))
10099imbi2d 343 . . . . . . . . . . . . 13 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → ((𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤) ↔ (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
101100ralbiia 3164 . . . . . . . . . . . 12 (∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤) ↔ ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
10295, 101sylibr 236 . . . . . . . . . . 11 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤))
103102ad2antlr 725 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤))
104 simprl 769 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
105 oveq1 7157 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 − (𝑔𝑚)) = (𝑠 − (𝑔𝑚)))
106105eleq1d 2897 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ↔ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))))
107106cbvrabv 3491 . . . . . . . . . . . 12 {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))}
108 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
109108oveq2d 7166 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑠 − (𝑔𝑚)) = (𝑠 − (𝑔𝑛)))
110109eleq1d 2897 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ↔ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))))
111110rabbidv 3480 . . . . . . . . . . . 12 (𝑚 = 𝑛 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
112107, 111syl5eq 2868 . . . . . . . . . . 11 (𝑚 = 𝑛 → {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
113112cbvmptv 5161 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))}) = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
114 simprr 771 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
11573, 74, 78, 103, 104, 113, 114vitalilem5 24207 . . . . . . . . 9 ¬ (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol)))
116115pm2.21i 119 . . . . . . . 8 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
117116expr 459 . . . . . . 7 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → (¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol)))
118117pm2.18d 127 . . . . . 6 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
119 eldif 3945 . . . . . . 7 (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol))
120 mblss 24126 . . . . . . . . . 10 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
121 velpw 4546 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
122120, 121sylibr 236 . . . . . . . . 9 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
123122ssriv 3970 . . . . . . . 8 dom vol ⊆ 𝒫 ℝ
124 ssnelpss 4087 . . . . . . . 8 (dom vol ⊆ 𝒫 ℝ → ((ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol) → dom vol ⊊ 𝒫 ℝ))
125123, 124ax-mp 5 . . . . . . 7 ((ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol) → dom vol ⊊ 𝒫 ℝ)
126119, 125sylbi 219 . . . . . 6 (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) → dom vol ⊊ 𝒫 ℝ)
127118, 126syl 17 . . . . 5 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → dom vol ⊊ 𝒫 ℝ)
128127ex 415 . . . 4 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → dom vol ⊊ 𝒫 ℝ))
129128exlimdv 1930 . . 3 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (∃𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → dom vol ⊊ 𝒫 ℝ))
13066, 129mpi 20 . 2 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → dom vol ⊊ 𝒫 ℝ)
13114, 130exlimddv 1932 1 ( < We ℝ → dom vol ⊊ 𝒫 ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wtru 1534  wex 1776  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3494  cdif 3932  cin 3934  wss 3935  wpss 3936  c0 4290  𝒫 cpw 4538   cuni 4831   class class class wbr 5058  {copab 5120  cmpt 5138   We wwe 5507   × cxp 5547  dom cdm 5549  ran crn 5550   Fn wfn 6344  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150   Er wer 8280   / cqs 8282  cen 8500  cdom 8501  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  cq 12342  [,]cicc 12735  volcvol 24058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060
This theorem is referenced by:  vitali2  42970
  Copyright terms: Public domain W3C validator