MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitali Structured version   Visualization version   GIF version

Theorem vitali 25121
Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
vitali ( < We ℝ → dom vol ⊊ 𝒫 ℝ)

Proof of Theorem vitali
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑚 𝑛 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11197 . . . 4 ℝ ∈ V
21pwex 5377 . . 3 𝒫 ℝ ∈ V
3 weinxp 5758 . . . . 5 ( < We ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ)
4 unipw 5449 . . . . . 6 𝒫 ℝ = ℝ
5 weeq2 5664 . . . . . 6 ( 𝒫 ℝ = ℝ → (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ))
64, 5ax-mp 5 . . . . 5 (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ)
73, 6bitr4i 277 . . . 4 ( < We ℝ ↔ ( < ∩ (ℝ × ℝ)) We 𝒫 ℝ)
81, 1xpex 7736 . . . . . 6 (ℝ × ℝ) ∈ V
98inex2 5317 . . . . 5 ( < ∩ (ℝ × ℝ)) ∈ V
10 weeq1 5663 . . . . 5 (𝑥 = ( < ∩ (ℝ × ℝ)) → (𝑥 We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We 𝒫 ℝ))
119, 10spcev 3596 . . . 4 (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ → ∃𝑥 𝑥 We 𝒫 ℝ)
127, 11sylbi 216 . . 3 ( < We ℝ → ∃𝑥 𝑥 We 𝒫 ℝ)
13 dfac8c 10024 . . 3 (𝒫 ℝ ∈ V → (∃𝑥 𝑥 We 𝒫 ℝ → ∃𝑓𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
142, 12, 13mpsyl 68 . 2 ( < We ℝ → ∃𝑓𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
15 qex 12941 . . . . . . 7 ℚ ∈ V
1615inex1 5316 . . . . . 6 (ℚ ∩ (-1[,]1)) ∈ V
17 nnrecq 12952 . . . . . . . 8 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℚ)
18 nnrecre 12250 . . . . . . . . 9 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℝ)
19 neg1rr 12323 . . . . . . . . . . 11 -1 ∈ ℝ
2019a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → -1 ∈ ℝ)
21 0re 11212 . . . . . . . . . . 11 0 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → 0 ∈ ℝ)
23 neg1lt0 12325 . . . . . . . . . . . 12 -1 < 0
2419, 21, 23ltleii 11333 . . . . . . . . . . 11 -1 ≤ 0
2524a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → -1 ≤ 0)
26 nnrp 12981 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
2726rpreccld 13022 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℝ+)
2827rpge0d 13016 . . . . . . . . . 10 (𝑥 ∈ ℕ → 0 ≤ (1 / 𝑥))
2920, 22, 18, 25, 28letrd 11367 . . . . . . . . 9 (𝑥 ∈ ℕ → -1 ≤ (1 / 𝑥))
30 nnge1 12236 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 1 ≤ 𝑥)
31 nnre 12215 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
32 nngt0 12239 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 0 < 𝑥)
33 1re 11210 . . . . . . . . . . . . 13 1 ∈ ℝ
34 0lt1 11732 . . . . . . . . . . . . 13 0 < 1
35 lerec 12093 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3633, 34, 35mpanl12 700 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3731, 32, 36syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3830, 37mpbid 231 . . . . . . . . . 10 (𝑥 ∈ ℕ → (1 / 𝑥) ≤ (1 / 1))
39 1div1e1 11900 . . . . . . . . . 10 (1 / 1) = 1
4038, 39breqtrdi 5188 . . . . . . . . 9 (𝑥 ∈ ℕ → (1 / 𝑥) ≤ 1)
4119, 33elicc2i 13386 . . . . . . . . 9 ((1 / 𝑥) ∈ (-1[,]1) ↔ ((1 / 𝑥) ∈ ℝ ∧ -1 ≤ (1 / 𝑥) ∧ (1 / 𝑥) ≤ 1))
4218, 29, 40, 41syl3anbrc 1343 . . . . . . . 8 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ (-1[,]1))
4317, 42elind 4193 . . . . . . 7 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ (ℚ ∩ (-1[,]1)))
44 oveq2 7413 . . . . . . . . 9 ((1 / 𝑥) = (1 / 𝑦) → (1 / (1 / 𝑥)) = (1 / (1 / 𝑦)))
45 nncn 12216 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
46 nnne0 12242 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
4745, 46recrecd 11983 . . . . . . . . . 10 (𝑥 ∈ ℕ → (1 / (1 / 𝑥)) = 𝑥)
48 nncn 12216 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
49 nnne0 12242 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
5048, 49recrecd 11983 . . . . . . . . . 10 (𝑦 ∈ ℕ → (1 / (1 / 𝑦)) = 𝑦)
5147, 50eqeqan12d 2746 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / (1 / 𝑥)) = (1 / (1 / 𝑦)) ↔ 𝑥 = 𝑦))
5244, 51imbitrid 243 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / 𝑥) = (1 / 𝑦) → 𝑥 = 𝑦))
53 oveq2 7413 . . . . . . . 8 (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦))
5452, 53impbid1 224 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / 𝑥) = (1 / 𝑦) ↔ 𝑥 = 𝑦))
5543, 54dom2 8987 . . . . . 6 ((ℚ ∩ (-1[,]1)) ∈ V → ℕ ≼ (ℚ ∩ (-1[,]1)))
5616, 55ax-mp 5 . . . . 5 ℕ ≼ (ℚ ∩ (-1[,]1))
57 inss1 4227 . . . . . . 7 (ℚ ∩ (-1[,]1)) ⊆ ℚ
58 ssdomg 8992 . . . . . . 7 (ℚ ∈ V → ((ℚ ∩ (-1[,]1)) ⊆ ℚ → (ℚ ∩ (-1[,]1)) ≼ ℚ))
5915, 57, 58mp2 9 . . . . . 6 (ℚ ∩ (-1[,]1)) ≼ ℚ
60 qnnen 16152 . . . . . 6 ℚ ≈ ℕ
61 domentr 9005 . . . . . 6 (((ℚ ∩ (-1[,]1)) ≼ ℚ ∧ ℚ ≈ ℕ) → (ℚ ∩ (-1[,]1)) ≼ ℕ)
6259, 60, 61mp2an 690 . . . . 5 (ℚ ∩ (-1[,]1)) ≼ ℕ
63 sbth 9089 . . . . 5 ((ℕ ≼ (ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ≼ ℕ) → ℕ ≈ (ℚ ∩ (-1[,]1)))
6456, 62, 63mp2an 690 . . . 4 ℕ ≈ (ℚ ∩ (-1[,]1))
65 bren 8945 . . . 4 (ℕ ≈ (ℚ ∩ (-1[,]1)) ↔ ∃𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
6664, 65mpbi 229 . . 3 𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))
67 eleq1w 2816 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑎 ∈ (0[,]1) ↔ 𝑥 ∈ (0[,]1)))
68 eleq1w 2816 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 ∈ (0[,]1) ↔ 𝑦 ∈ (0[,]1)))
6967, 68bi2anan9 637 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))))
70 oveq12 7414 . . . . . . . . . . . . 13 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎𝑏) = (𝑥𝑦))
7170eleq1d 2818 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎𝑏) ∈ ℚ ↔ (𝑥𝑦) ∈ ℚ))
7269, 71anbi12d 631 . . . . . . . . . . 11 ((𝑎 = 𝑥𝑏 = 𝑦) → (((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ) ↔ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)))
7372cbvopabv 5220 . . . . . . . . . 10 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
74 eqid 2732 . . . . . . . . . 10 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) = ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})
75 fvex 6901 . . . . . . . . . . . 12 (𝑓𝑐) ∈ V
76 eqid 2732 . . . . . . . . . . . 12 (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) = (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))
7775, 76fnmpti 6690 . . . . . . . . . . 11 (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) Fn ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})
7877a1i 11 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) Fn ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}))
79 neeq1 3003 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅))
80 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑓𝑧) = (𝑓𝑤))
81 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤𝑧 = 𝑤)
8280, 81eleq12d 2827 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑤) ∈ 𝑤))
8379, 82imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
8483cbvralvw 3234 . . . . . . . . . . . . 13 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
8573vitalilem1 25116 . . . . . . . . . . . . . . . . . 18 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} Er (0[,]1)
8685a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} Er (0[,]1))
8786qsss 8768 . . . . . . . . . . . . . . . 16 (⊤ → ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 (0[,]1))
8887mptru 1548 . . . . . . . . . . . . . . 15 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 (0[,]1)
89 unitssre 13472 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
9089sspwi 4613 . . . . . . . . . . . . . . 15 𝒫 (0[,]1) ⊆ 𝒫 ℝ
9188, 90sstri 3990 . . . . . . . . . . . . . 14 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 ℝ
92 ssralv 4049 . . . . . . . . . . . . . 14 (((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 ℝ → (∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
9391, 92ax-mp 5 . . . . . . . . . . . . 13 (∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
9484, 93sylbi 216 . . . . . . . . . . . 12 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
95 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑤 → (𝑓𝑐) = (𝑓𝑤))
96 fvex 6901 . . . . . . . . . . . . . . . 16 (𝑓𝑤) ∈ V
9795, 76, 96fvmpt 6995 . . . . . . . . . . . . . . 15 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) = (𝑓𝑤))
9897eleq1d 2818 . . . . . . . . . . . . . 14 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → (((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤 ↔ (𝑓𝑤) ∈ 𝑤))
9998imbi2d 340 . . . . . . . . . . . . 13 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → ((𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤) ↔ (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
10099ralbiia 3091 . . . . . . . . . . . 12 (∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤) ↔ ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
10194, 100sylibr 233 . . . . . . . . . . 11 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤))
102101ad2antlr 725 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤))
103 simprl 769 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
104 oveq1 7412 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 − (𝑔𝑚)) = (𝑠 − (𝑔𝑚)))
105104eleq1d 2818 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ↔ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))))
106105cbvrabv 3442 . . . . . . . . . . . 12 {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))}
107 fveq2 6888 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
108107oveq2d 7421 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑠 − (𝑔𝑚)) = (𝑠 − (𝑔𝑛)))
109108eleq1d 2818 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ↔ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))))
110109rabbidv 3440 . . . . . . . . . . . 12 (𝑚 = 𝑛 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
111106, 110eqtrid 2784 . . . . . . . . . . 11 (𝑚 = 𝑛 → {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
112111cbvmptv 5260 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))}) = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
113 simprr 771 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
11473, 74, 78, 102, 103, 112, 113vitalilem5 25120 . . . . . . . . 9 ¬ (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol)))
115114pm2.21i 119 . . . . . . . 8 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
116115expr 457 . . . . . . 7 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → (¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol)))
117116pm2.18d 127 . . . . . 6 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
118 eldif 3957 . . . . . . 7 (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol))
119 mblss 25039 . . . . . . . . . 10 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
120 velpw 4606 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
121119, 120sylibr 233 . . . . . . . . 9 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
122121ssriv 3985 . . . . . . . 8 dom vol ⊆ 𝒫 ℝ
123 ssnelpss 4110 . . . . . . . 8 (dom vol ⊆ 𝒫 ℝ → ((ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol) → dom vol ⊊ 𝒫 ℝ))
124122, 123ax-mp 5 . . . . . . 7 ((ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol) → dom vol ⊊ 𝒫 ℝ)
125118, 124sylbi 216 . . . . . 6 (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) → dom vol ⊊ 𝒫 ℝ)
126117, 125syl 17 . . . . 5 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → dom vol ⊊ 𝒫 ℝ)
127126ex 413 . . . 4 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → dom vol ⊊ 𝒫 ℝ))
128127exlimdv 1936 . . 3 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (∃𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → dom vol ⊊ 𝒫 ℝ))
12966, 128mpi 20 . 2 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → dom vol ⊊ 𝒫 ℝ)
13014, 129exlimddv 1938 1 ( < We ℝ → dom vol ⊊ 𝒫 ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wtru 1542  wex 1781  wcel 2106  wne 2940  wral 3061  {crab 3432  Vcvv 3474  cdif 3944  cin 3946  wss 3947  wpss 3948  c0 4321  𝒫 cpw 4601   cuni 4907   class class class wbr 5147  {copab 5209  cmpt 5230   We wwe 5629   × cxp 5673  dom cdm 5675  ran crn 5676   Fn wfn 6535  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405   Er wer 8696   / cqs 8698  cen 8932  cdom 8933  cr 11105  0cc0 11106  1c1 11107   < clt 11244  cle 11245  cmin 11440  -cneg 11441   / cdiv 11867  cn 12208  cq 12928  [,]cicc 13323  volcvol 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-rest 17364  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440  df-cmp 22882  df-ovol 24972  df-vol 24973
This theorem is referenced by:  vitali2  45396
  Copyright terms: Public domain W3C validator