MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitali Structured version   Visualization version   GIF version

Theorem vitali 25564
Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
vitali ( < We ℝ → dom vol ⊊ 𝒫 ℝ)

Proof of Theorem vitali
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑚 𝑛 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11218 . . . 4 ℝ ∈ V
21pwex 5350 . . 3 𝒫 ℝ ∈ V
3 weinxp 5739 . . . . 5 ( < We ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ)
4 unipw 5425 . . . . . 6 𝒫 ℝ = ℝ
5 weeq2 5642 . . . . . 6 ( 𝒫 ℝ = ℝ → (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ))
64, 5ax-mp 5 . . . . 5 (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We ℝ)
73, 6bitr4i 278 . . . 4 ( < We ℝ ↔ ( < ∩ (ℝ × ℝ)) We 𝒫 ℝ)
81, 1xpex 7745 . . . . . 6 (ℝ × ℝ) ∈ V
98inex2 5288 . . . . 5 ( < ∩ (ℝ × ℝ)) ∈ V
10 weeq1 5641 . . . . 5 (𝑥 = ( < ∩ (ℝ × ℝ)) → (𝑥 We 𝒫 ℝ ↔ ( < ∩ (ℝ × ℝ)) We 𝒫 ℝ))
119, 10spcev 3585 . . . 4 (( < ∩ (ℝ × ℝ)) We 𝒫 ℝ → ∃𝑥 𝑥 We 𝒫 ℝ)
127, 11sylbi 217 . . 3 ( < We ℝ → ∃𝑥 𝑥 We 𝒫 ℝ)
13 dfac8c 10045 . . 3 (𝒫 ℝ ∈ V → (∃𝑥 𝑥 We 𝒫 ℝ → ∃𝑓𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
142, 12, 13mpsyl 68 . 2 ( < We ℝ → ∃𝑓𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
15 qex 12975 . . . . . . 7 ℚ ∈ V
1615inex1 5287 . . . . . 6 (ℚ ∩ (-1[,]1)) ∈ V
17 nnrecq 12986 . . . . . . . 8 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℚ)
18 nnrecre 12280 . . . . . . . . 9 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℝ)
19 neg1rr 12353 . . . . . . . . . . 11 -1 ∈ ℝ
2019a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → -1 ∈ ℝ)
21 0re 11235 . . . . . . . . . . 11 0 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → 0 ∈ ℝ)
23 neg1lt0 12355 . . . . . . . . . . . 12 -1 < 0
2419, 21, 23ltleii 11356 . . . . . . . . . . 11 -1 ≤ 0
2524a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ → -1 ≤ 0)
26 nnrp 13018 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
2726rpreccld 13059 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ ℝ+)
2827rpge0d 13053 . . . . . . . . . 10 (𝑥 ∈ ℕ → 0 ≤ (1 / 𝑥))
2920, 22, 18, 25, 28letrd 11390 . . . . . . . . 9 (𝑥 ∈ ℕ → -1 ≤ (1 / 𝑥))
30 nnge1 12266 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 1 ≤ 𝑥)
31 nnre 12245 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
32 nngt0 12269 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 0 < 𝑥)
33 1re 11233 . . . . . . . . . . . . 13 1 ∈ ℝ
34 0lt1 11757 . . . . . . . . . . . . 13 0 < 1
35 lerec 12123 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3633, 34, 35mpanl12 702 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3731, 32, 36syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (1 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 1)))
3830, 37mpbid 232 . . . . . . . . . 10 (𝑥 ∈ ℕ → (1 / 𝑥) ≤ (1 / 1))
39 1div1e1 11930 . . . . . . . . . 10 (1 / 1) = 1
4038, 39breqtrdi 5160 . . . . . . . . 9 (𝑥 ∈ ℕ → (1 / 𝑥) ≤ 1)
4119, 33elicc2i 13427 . . . . . . . . 9 ((1 / 𝑥) ∈ (-1[,]1) ↔ ((1 / 𝑥) ∈ ℝ ∧ -1 ≤ (1 / 𝑥) ∧ (1 / 𝑥) ≤ 1))
4218, 29, 40, 41syl3anbrc 1344 . . . . . . . 8 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ (-1[,]1))
4317, 42elind 4175 . . . . . . 7 (𝑥 ∈ ℕ → (1 / 𝑥) ∈ (ℚ ∩ (-1[,]1)))
44 oveq2 7411 . . . . . . . . 9 ((1 / 𝑥) = (1 / 𝑦) → (1 / (1 / 𝑥)) = (1 / (1 / 𝑦)))
45 nncn 12246 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
46 nnne0 12272 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
4745, 46recrecd 12012 . . . . . . . . . 10 (𝑥 ∈ ℕ → (1 / (1 / 𝑥)) = 𝑥)
48 nncn 12246 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
49 nnne0 12272 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
5048, 49recrecd 12012 . . . . . . . . . 10 (𝑦 ∈ ℕ → (1 / (1 / 𝑦)) = 𝑦)
5147, 50eqeqan12d 2749 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / (1 / 𝑥)) = (1 / (1 / 𝑦)) ↔ 𝑥 = 𝑦))
5244, 51imbitrid 244 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / 𝑥) = (1 / 𝑦) → 𝑥 = 𝑦))
53 oveq2 7411 . . . . . . . 8 (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦))
5452, 53impbid1 225 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((1 / 𝑥) = (1 / 𝑦) ↔ 𝑥 = 𝑦))
5543, 54dom2 9007 . . . . . 6 ((ℚ ∩ (-1[,]1)) ∈ V → ℕ ≼ (ℚ ∩ (-1[,]1)))
5616, 55ax-mp 5 . . . . 5 ℕ ≼ (ℚ ∩ (-1[,]1))
57 inss1 4212 . . . . . . 7 (ℚ ∩ (-1[,]1)) ⊆ ℚ
58 ssdomg 9012 . . . . . . 7 (ℚ ∈ V → ((ℚ ∩ (-1[,]1)) ⊆ ℚ → (ℚ ∩ (-1[,]1)) ≼ ℚ))
5915, 57, 58mp2 9 . . . . . 6 (ℚ ∩ (-1[,]1)) ≼ ℚ
60 qnnen 16229 . . . . . 6 ℚ ≈ ℕ
61 domentr 9025 . . . . . 6 (((ℚ ∩ (-1[,]1)) ≼ ℚ ∧ ℚ ≈ ℕ) → (ℚ ∩ (-1[,]1)) ≼ ℕ)
6259, 60, 61mp2an 692 . . . . 5 (ℚ ∩ (-1[,]1)) ≼ ℕ
63 sbth 9105 . . . . 5 ((ℕ ≼ (ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ≼ ℕ) → ℕ ≈ (ℚ ∩ (-1[,]1)))
6456, 62, 63mp2an 692 . . . 4 ℕ ≈ (ℚ ∩ (-1[,]1))
65 bren 8967 . . . 4 (ℕ ≈ (ℚ ∩ (-1[,]1)) ↔ ∃𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
6664, 65mpbi 230 . . 3 𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))
67 eleq1w 2817 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑎 ∈ (0[,]1) ↔ 𝑥 ∈ (0[,]1)))
68 eleq1w 2817 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 ∈ (0[,]1) ↔ 𝑦 ∈ (0[,]1)))
6967, 68bi2anan9 638 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1))))
70 oveq12 7412 . . . . . . . . . . . . 13 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎𝑏) = (𝑥𝑦))
7170eleq1d 2819 . . . . . . . . . . . 12 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎𝑏) ∈ ℚ ↔ (𝑥𝑦) ∈ ℚ))
7269, 71anbi12d 632 . . . . . . . . . . 11 ((𝑎 = 𝑥𝑏 = 𝑦) → (((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ) ↔ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)))
7372cbvopabv 5192 . . . . . . . . . 10 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
74 eqid 2735 . . . . . . . . . 10 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) = ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})
75 fvex 6888 . . . . . . . . . . . 12 (𝑓𝑐) ∈ V
76 eqid 2735 . . . . . . . . . . . 12 (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) = (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))
7775, 76fnmpti 6680 . . . . . . . . . . 11 (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) Fn ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})
7877a1i 11 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) Fn ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}))
79 neeq1 2994 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅))
80 fveq2 6875 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑓𝑧) = (𝑓𝑤))
81 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤𝑧 = 𝑤)
8280, 81eleq12d 2828 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑤) ∈ 𝑤))
8379, 82imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
8483cbvralvw 3220 . . . . . . . . . . . . 13 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
8573vitalilem1 25559 . . . . . . . . . . . . . . . . . 18 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} Er (0[,]1)
8685a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)} Er (0[,]1))
8786qsss 8790 . . . . . . . . . . . . . . . 16 (⊤ → ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 (0[,]1))
8887mptru 1547 . . . . . . . . . . . . . . 15 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 (0[,]1)
89 unitssre 13514 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
9089sspwi 4587 . . . . . . . . . . . . . . 15 𝒫 (0[,]1) ⊆ 𝒫 ℝ
9188, 90sstri 3968 . . . . . . . . . . . . . 14 ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 ℝ
92 ssralv 4027 . . . . . . . . . . . . . 14 (((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ⊆ 𝒫 ℝ → (∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
9391, 92ax-mp 5 . . . . . . . . . . . . 13 (∀𝑤 ∈ 𝒫 ℝ(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
9484, 93sylbi 217 . . . . . . . . . . . 12 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
95 fveq2 6875 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑤 → (𝑓𝑐) = (𝑓𝑤))
96 fvex 6888 . . . . . . . . . . . . . . . 16 (𝑓𝑤) ∈ V
9795, 76, 96fvmpt 6985 . . . . . . . . . . . . . . 15 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) = (𝑓𝑤))
9897eleq1d 2819 . . . . . . . . . . . . . 14 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → (((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤 ↔ (𝑓𝑤) ∈ 𝑤))
9998imbi2d 340 . . . . . . . . . . . . 13 (𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) → ((𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤) ↔ (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤)))
10099ralbiia 3080 . . . . . . . . . . . 12 (∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤) ↔ ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
10194, 100sylibr 234 . . . . . . . . . . 11 (∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤))
102101ad2antlr 727 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ∀𝑤 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)})(𝑤 ≠ ∅ → ((𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))‘𝑤) ∈ 𝑤))
103 simprl 770 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
104 oveq1 7410 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 − (𝑔𝑚)) = (𝑠 − (𝑔𝑚)))
105104eleq1d 2819 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ↔ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))))
106105cbvrabv 3426 . . . . . . . . . . . 12 {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))}
107 fveq2 6875 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
108107oveq2d 7419 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑠 − (𝑔𝑚)) = (𝑠 − (𝑔𝑛)))
109108eleq1d 2819 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ↔ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))))
110109rabbidv 3423 . . . . . . . . . . . 12 (𝑚 = 𝑛 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
111106, 110eqtrid 2782 . . . . . . . . . . 11 (𝑚 = 𝑛 → {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
112111cbvmptv 5225 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ {𝑡 ∈ ℝ ∣ (𝑡 − (𝑔𝑚)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))}) = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝑔𝑛)) ∈ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐))})
113 simprr 772 . . . . . . . . . 10 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
11473, 74, 78, 102, 103, 112, 113vitalilem5 25563 . . . . . . . . 9 ¬ (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol)))
115114pm2.21i 119 . . . . . . . 8 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
116115expr 456 . . . . . . 7 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → (¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol)))
117116pm2.18d 127 . . . . . 6 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol))
118 eldif 3936 . . . . . . 7 (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) ↔ (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol))
119 mblss 25482 . . . . . . . . . 10 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
120 velpw 4580 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
121119, 120sylibr 234 . . . . . . . . 9 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
122121ssriv 3962 . . . . . . . 8 dom vol ⊆ 𝒫 ℝ
123 ssnelpss 4089 . . . . . . . 8 (dom vol ⊆ 𝒫 ℝ → ((ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol) → dom vol ⊊ 𝒫 ℝ))
124122, 123ax-mp 5 . . . . . . 7 ((ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ 𝒫 ℝ ∧ ¬ ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ dom vol) → dom vol ⊊ 𝒫 ℝ)
125118, 124sylbi 217 . . . . . 6 (ran (𝑐 ∈ ((0[,]1) / {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1)) ∧ (𝑎𝑏) ∈ ℚ)}) ↦ (𝑓𝑐)) ∈ (𝒫 ℝ ∖ dom vol) → dom vol ⊊ 𝒫 ℝ)
126117, 125syl 17 . . . . 5 ((( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ∧ 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) → dom vol ⊊ 𝒫 ℝ)
127126ex 412 . . . 4 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → dom vol ⊊ 𝒫 ℝ))
128127exlimdv 1933 . . 3 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (∃𝑔 𝑔:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → dom vol ⊊ 𝒫 ℝ))
12966, 128mpi 20 . 2 (( < We ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → dom vol ⊊ 𝒫 ℝ)
13014, 129exlimddv 1935 1 ( < We ℝ → dom vol ⊊ 𝒫 ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wex 1779  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cin 3925  wss 3926  wpss 3927  c0 4308  𝒫 cpw 4575   cuni 4883   class class class wbr 5119  {copab 5181  cmpt 5201   We wwe 5605   × cxp 5652  dom cdm 5654  ran crn 5655   Fn wfn 6525  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403   Er wer 8714   / cqs 8716  cen 8954  cdom 8955  cr 11126  0cc0 11127  1c1 11128   < clt 11267  cle 11268  cmin 11464  -cneg 11465   / cdiv 11892  cn 12238  cq 12962  [,]cicc 13363  volcvol 25414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cmp 23323  df-ovol 25415  df-vol 25416
This theorem is referenced by:  vitali2  46671
  Copyright terms: Public domain W3C validator