MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mono Structured version   Visualization version   GIF version

Theorem itg2mono 25660
Description: The Monotone Convergence Theorem for nonnegative functions. If {(𝐹𝑛):𝑛 ∈ ℕ} is a monotone increasing sequence of positive, measurable, real-valued functions, and 𝐺 is the pointwise limit of the sequence, then (∫2𝐺) is the limit of the sequence {(∫2‘(𝐹𝑛)):𝑛 ∈ ℕ}. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
Assertion
Ref Expression
itg2mono (𝜑 → (∫2𝐺) = 𝑆)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2mono
Dummy variables 𝑓 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mono.3 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
2 rge0ssre 13423 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℝ
3 fss 6706 . . . . . . . . . . . 12 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → (𝐹𝑛):ℝ⟶ℝ)
41, 2, 3sylancl 586 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶ℝ)
54ffvelcdmda 7058 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
65an32s 652 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
76fmpttd 7089 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)):ℕ⟶ℝ)
87frnd 6698 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ)
9 1nn 12198 . . . . . . . . . 10 1 ∈ ℕ
10 eqid 2730 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))
1110, 6dmmptd 6665 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ℕ)
129, 11eleqtrrid 2836 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
1312ne0d 4307 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
14 dm0rn0 5890 . . . . . . . . 9 (dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ∅)
1514necon3bii 2978 . . . . . . . 8 (dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
1613, 15sylib 218 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
17 itg2mono.5 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
187ffnd 6691 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ)
19 breq1 5112 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) → (𝑧𝑦 ↔ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
2019ralrn 7062 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
2118, 20syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
22 fveq2 6860 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2322fveq1d 6862 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑚)‘𝑥))
24 fvex 6873 . . . . . . . . . . . . . 14 ((𝐹𝑚)‘𝑥) ∈ V
2523, 10, 24fvmpt 6970 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
2625breq1d 5119 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑥) ≤ 𝑦))
2726ralbiia 3074 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹𝑚)‘𝑥) ≤ 𝑦)
2823breq1d 5119 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑥) ≤ 𝑦))
2928cbvralvw 3216 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹𝑚)‘𝑥) ≤ 𝑦)
3027, 29bitr4i 278 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3121, 30bitrdi 287 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3231rexbidv 3158 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3317, 32mpbird 257 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦)
348, 16, 33suprcld 12152 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
3534rexrd 11230 . . . . 5 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ*)
36 0red 11183 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ ℝ)
37 fveq2 6860 . . . . . . . . . . 11 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
3837feq1d 6672 . . . . . . . . . 10 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘1):ℝ⟶(0[,)+∞)))
391ralrimiva 3126 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,)+∞))
409a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ)
4138, 39, 40rspcdva 3592 . . . . . . . . 9 (𝜑 → (𝐹‘1):ℝ⟶(0[,)+∞))
4241ffvelcdmda 7058 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ (0[,)+∞))
43 elrege0 13421 . . . . . . . 8 (((𝐹‘1)‘𝑥) ∈ (0[,)+∞) ↔ (((𝐹‘1)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘1)‘𝑥)))
4442, 43sylib 218 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (((𝐹‘1)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘1)‘𝑥)))
4544simpld 494 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ ℝ)
4644simprd 495 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ ((𝐹‘1)‘𝑥))
4737fveq1d 6862 . . . . . . . . . 10 (𝑛 = 1 → ((𝐹𝑛)‘𝑥) = ((𝐹‘1)‘𝑥))
48 fvex 6873 . . . . . . . . . 10 ((𝐹‘1)‘𝑥) ∈ V
4947, 10, 48fvmpt 6970 . . . . . . . . 9 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) = ((𝐹‘1)‘𝑥))
509, 49ax-mp 5 . . . . . . . 8 ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) = ((𝐹‘1)‘𝑥)
51 fnfvelrn 7054 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
5218, 9, 51sylancl 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
5350, 52eqeltrrid 2834 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
548, 16, 33, 53suprubd 12151 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
5536, 45, 34, 46, 54letrd 11337 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 0 ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
56 elxrge0 13424 . . . . 5 (sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ (0[,]+∞) ↔ (sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ* ∧ 0 ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
5735, 55, 56sylanbrc 583 . . . 4 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ (0[,]+∞))
58 itg2mono.1 . . . 4 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
5957, 58fmptd 7088 . . 3 (𝜑𝐺:ℝ⟶(0[,]+∞))
60 itg2cl 25639 . . 3 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
6159, 60syl 17 . 2 (𝜑 → (∫2𝐺) ∈ ℝ*)
62 itg2mono.6 . . 3 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
63 icossicc 13403 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
64 fss 6706 . . . . . . . 8 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
651, 63, 64sylancl 586 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
66 itg2cl 25639 . . . . . . 7 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
6765, 66syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
6867fmpttd 7089 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
6968frnd 6698 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
70 supxrcl 13281 . . . 4 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
7169, 70syl 17 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
7262, 71eqeltrid 2833 . 2 (𝜑𝑆 ∈ ℝ*)
73 itg2mono.2 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
7473adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
751adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
76 itg2mono.4 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
7776adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
7817adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
79 simprll 778 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → 𝑓 ∈ dom ∫1)
80 simprlr 779 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → 𝑓r𝐺)
81 simprr 772 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → ¬ (∫1𝑓) ≤ 𝑆)
8258, 74, 75, 77, 78, 62, 79, 80, 81itg2monolem3 25659 . . . . . . 7 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → (∫1𝑓) ≤ 𝑆)
8382expr 456 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐺)) → (¬ (∫1𝑓) ≤ 𝑆 → (∫1𝑓) ≤ 𝑆))
8483pm2.18d 127 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐺)) → (∫1𝑓) ≤ 𝑆)
8584expr 456 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐺 → (∫1𝑓) ≤ 𝑆))
8685ralrimiva 3126 . . 3 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆))
87 itg2leub 25641 . . . 4 ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑆 ∈ ℝ*) → ((∫2𝐺) ≤ 𝑆 ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆)))
8859, 72, 87syl2anc 584 . . 3 (𝜑 → ((∫2𝐺) ≤ 𝑆 ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆)))
8986, 88mpbird 257 . 2 (𝜑 → (∫2𝐺) ≤ 𝑆)
9022feq1d 6672 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐹𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹𝑚):ℝ⟶(0[,)+∞)))
9190cbvralvw 3216 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,)+∞) ↔ ∀𝑚 ∈ ℕ (𝐹𝑚):ℝ⟶(0[,)+∞))
9239, 91sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝐹𝑚):ℝ⟶(0[,)+∞))
9392r19.21bi 3230 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚):ℝ⟶(0[,)+∞))
94 fss 6706 . . . . . . . 8 (((𝐹𝑚):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑚):ℝ⟶(0[,]+∞))
9593, 63, 94sylancl 586 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚):ℝ⟶(0[,]+∞))
9659adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝐺:ℝ⟶(0[,]+∞))
978, 16, 333jca 1128 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦))
9897adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦))
9925ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
10018adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ)
101 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑚 ∈ ℕ)
102 fnfvelrn 7054 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
103100, 101, 102syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
10499, 103eqeltrrd 2830 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
105 suprub 12150 . . . . . . . . . . . 12 (((ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦) ∧ ((𝐹𝑚)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))) → ((𝐹𝑚)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
10698, 104, 105syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
107 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
108 ltso 11260 . . . . . . . . . . . . 13 < Or ℝ
109108supex 9421 . . . . . . . . . . . 12 sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ V
11058fvmpt2 6981 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ V) → (𝐺𝑥) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
111107, 109, 110sylancl 586 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺𝑥) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
112106, 111breqtrrd 5137 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥))
113112ralrimiva 3126 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥))
114 fveq2 6860 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
115 fveq2 6860 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
116114, 115breq12d 5122 . . . . . . . . . 10 (𝑥 = 𝑧 → (((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥) ↔ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧)))
117116cbvralvw 3216 . . . . . . . . 9 (∀𝑥 ∈ ℝ ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥) ↔ ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧))
118113, 117sylib 218 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧))
11993ffnd 6691 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) Fn ℝ)
12034, 58fmptd 7088 . . . . . . . . . . 11 (𝜑𝐺:ℝ⟶ℝ)
121120ffnd 6691 . . . . . . . . . 10 (𝜑𝐺 Fn ℝ)
122121adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐺 Fn ℝ)
123 reex 11165 . . . . . . . . . 10 ℝ ∈ V
124123a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
125 inidm 4192 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
126 eqidd 2731 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑚)‘𝑧) = ((𝐹𝑚)‘𝑧))
127 eqidd 2731 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
128119, 122, 124, 124, 125, 126, 127ofrfval 7665 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐹𝑚) ∘r𝐺 ↔ ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧)))
129118, 128mpbird 257 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∘r𝐺)
130 itg2le 25646 . . . . . . 7 (((𝐹𝑚):ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ (𝐹𝑚) ∘r𝐺) → (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
13195, 96, 129, 130syl3anc 1373 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
132131ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
13368ffnd 6691 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
134 breq1 5112 . . . . . . . 8 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) → (𝑧 ≤ (∫2𝐺) ↔ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
135134ralrn 7062 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
136133, 135syl 17 . . . . . 6 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
137 2fveq3 6865 . . . . . . . . 9 (𝑛 = 𝑚 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹𝑚)))
138 eqid 2730 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
139 fvex 6873 . . . . . . . . 9 (∫2‘(𝐹𝑚)) ∈ V
140137, 138, 139fvmpt 6970 . . . . . . . 8 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) = (∫2‘(𝐹𝑚)))
141140breq1d 5119 . . . . . . 7 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺) ↔ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺)))
142141ralbiia 3074 . . . . . 6 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
143136, 142bitrdi 287 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺)))
144132, 143mpbird 257 . . . 4 (𝜑 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺))
145 supxrleub 13292 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2𝐺) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺)))
14669, 61, 145syl2anc 584 . . . 4 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺)))
147144, 146mpbird 257 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺))
14862, 147eqbrtrid 5144 . 2 (𝜑𝑆 ≤ (∫2𝐺))
14961, 72, 89, 148xrletrid 13121 1 (𝜑 → (∫2𝐺) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3916  c0 4298   class class class wbr 5109  cmpt 5190  dom cdm 5640  ran crn 5641   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  r cofr 7654  supcsup 9397  cr 11073  0cc0 11074  1c1 11075   + caddc 11077  +∞cpnf 11211  *cxr 11213   < clt 11214  cle 11215  cn 12187  [,)cico 13314  [,]cicc 13315  MblFncmbf 25521  1citg1 25522  2citg2 25523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cc 10394  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-disj 5077  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-omul 8441  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-dju 9860  df-card 9898  df-acn 9901  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-rlim 15461  df-sum 15659  df-rest 17391  df-topgen 17412  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-top 22787  df-topon 22804  df-bases 22839  df-cmp 23280  df-ovol 25371  df-vol 25372  df-mbf 25526  df-itg1 25527  df-itg2 25528
This theorem is referenced by:  itg2i1fseq  25662  itg2cnlem1  25668
  Copyright terms: Public domain W3C validator