MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mono Structured version   Visualization version   GIF version

Theorem itg2mono 24269
Description: The Monotone Convergence Theorem for nonnegative functions. If {(𝐹𝑛):𝑛 ∈ ℕ} is a monotone increasing sequence of positive, measurable, real-valued functions, and 𝐺 is the pointwise limit of the sequence, then (∫2𝐺) is the limit of the sequence {(∫2‘(𝐹𝑛)):𝑛 ∈ ℕ}. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
Assertion
Ref Expression
itg2mono (𝜑 → (∫2𝐺) = 𝑆)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2mono
Dummy variables 𝑓 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mono.3 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
2 rge0ssre 12837 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℝ
3 fss 6523 . . . . . . . . . . . 12 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → (𝐹𝑛):ℝ⟶ℝ)
41, 2, 3sylancl 586 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶ℝ)
54ffvelrnda 6846 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
65an32s 648 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
76fmpttd 6874 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)):ℕ⟶ℝ)
87frnd 6517 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ)
9 1nn 11641 . . . . . . . . . 10 1 ∈ ℕ
10 eqid 2824 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))
1110, 6dmmptd 6489 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ℕ)
129, 11eleqtrrid 2924 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
1312ne0d 4304 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
14 dm0rn0 5793 . . . . . . . . 9 (dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ∅)
1514necon3bii 3072 . . . . . . . 8 (dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
1613, 15sylib 219 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
17 itg2mono.5 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
187ffnd 6511 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ)
19 breq1 5065 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) → (𝑧𝑦 ↔ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
2019ralrn 6849 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
2118, 20syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
22 fveq2 6666 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2322fveq1d 6668 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑚)‘𝑥))
24 fvex 6679 . . . . . . . . . . . . . 14 ((𝐹𝑚)‘𝑥) ∈ V
2523, 10, 24fvmpt 6764 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
2625breq1d 5072 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑥) ≤ 𝑦))
2726ralbiia 3168 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹𝑚)‘𝑥) ≤ 𝑦)
2823breq1d 5072 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑥) ≤ 𝑦))
2928cbvralv 3457 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹𝑚)‘𝑥) ≤ 𝑦)
3027, 29bitr4i 279 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3121, 30syl6bb 288 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3231rexbidv 3301 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3317, 32mpbird 258 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦)
348, 16, 33suprcld 11596 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
3534rexrd 10683 . . . . 5 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ*)
36 0red 10636 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ ℝ)
37 fveq2 6666 . . . . . . . . . . 11 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
3837feq1d 6495 . . . . . . . . . 10 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘1):ℝ⟶(0[,)+∞)))
391ralrimiva 3186 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,)+∞))
409a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ)
4138, 39, 40rspcdva 3628 . . . . . . . . 9 (𝜑 → (𝐹‘1):ℝ⟶(0[,)+∞))
4241ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ (0[,)+∞))
43 elrege0 12835 . . . . . . . 8 (((𝐹‘1)‘𝑥) ∈ (0[,)+∞) ↔ (((𝐹‘1)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘1)‘𝑥)))
4442, 43sylib 219 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (((𝐹‘1)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘1)‘𝑥)))
4544simpld 495 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ ℝ)
4644simprd 496 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ ((𝐹‘1)‘𝑥))
4737fveq1d 6668 . . . . . . . . . 10 (𝑛 = 1 → ((𝐹𝑛)‘𝑥) = ((𝐹‘1)‘𝑥))
48 fvex 6679 . . . . . . . . . 10 ((𝐹‘1)‘𝑥) ∈ V
4947, 10, 48fvmpt 6764 . . . . . . . . 9 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) = ((𝐹‘1)‘𝑥))
509, 49ax-mp 5 . . . . . . . 8 ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) = ((𝐹‘1)‘𝑥)
51 fnfvelrn 6843 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
5218, 9, 51sylancl 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
5350, 52eqeltrrid 2922 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
548, 16, 33, 53suprubd 11595 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
5536, 45, 34, 46, 54letrd 10789 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 0 ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
56 elxrge0 12838 . . . . 5 (sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ (0[,]+∞) ↔ (sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ* ∧ 0 ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
5735, 55, 56sylanbrc 583 . . . 4 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ (0[,]+∞))
58 itg2mono.1 . . . 4 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
5957, 58fmptd 6873 . . 3 (𝜑𝐺:ℝ⟶(0[,]+∞))
60 itg2cl 24248 . . 3 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
6159, 60syl 17 . 2 (𝜑 → (∫2𝐺) ∈ ℝ*)
62 itg2mono.6 . . 3 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
63 icossicc 12817 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
64 fss 6523 . . . . . . . 8 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
651, 63, 64sylancl 586 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
66 itg2cl 24248 . . . . . . 7 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
6765, 66syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
6867fmpttd 6874 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
6968frnd 6517 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
70 supxrcl 12701 . . . 4 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
7169, 70syl 17 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
7262, 71eqeltrid 2921 . 2 (𝜑𝑆 ∈ ℝ*)
73 itg2mono.2 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
7473adantlr 711 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
751adantlr 711 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
76 itg2mono.4 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
7776adantlr 711 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
7817adantlr 711 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
79 simprll 775 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → 𝑓 ∈ dom ∫1)
80 simprlr 776 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → 𝑓r𝐺)
81 simprr 769 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → ¬ (∫1𝑓) ≤ 𝑆)
8258, 74, 75, 77, 78, 62, 79, 80, 81itg2monolem3 24268 . . . . . . 7 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → (∫1𝑓) ≤ 𝑆)
8382expr 457 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐺)) → (¬ (∫1𝑓) ≤ 𝑆 → (∫1𝑓) ≤ 𝑆))
8483pm2.18d 127 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐺)) → (∫1𝑓) ≤ 𝑆)
8584expr 457 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐺 → (∫1𝑓) ≤ 𝑆))
8685ralrimiva 3186 . . 3 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆))
87 itg2leub 24250 . . . 4 ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑆 ∈ ℝ*) → ((∫2𝐺) ≤ 𝑆 ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆)))
8859, 72, 87syl2anc 584 . . 3 (𝜑 → ((∫2𝐺) ≤ 𝑆 ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆)))
8986, 88mpbird 258 . 2 (𝜑 → (∫2𝐺) ≤ 𝑆)
9022feq1d 6495 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐹𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹𝑚):ℝ⟶(0[,)+∞)))
9190cbvralv 3457 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,)+∞) ↔ ∀𝑚 ∈ ℕ (𝐹𝑚):ℝ⟶(0[,)+∞))
9239, 91sylib 219 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝐹𝑚):ℝ⟶(0[,)+∞))
9392r19.21bi 3212 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚):ℝ⟶(0[,)+∞))
94 fss 6523 . . . . . . . 8 (((𝐹𝑚):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑚):ℝ⟶(0[,]+∞))
9593, 63, 94sylancl 586 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚):ℝ⟶(0[,]+∞))
9659adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝐺:ℝ⟶(0[,]+∞))
978, 16, 333jca 1122 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦))
9897adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦))
9925ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
10018adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ)
101 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑚 ∈ ℕ)
102 fnfvelrn 6843 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
103100, 101, 102syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
10499, 103eqeltrrd 2918 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
105 suprub 11594 . . . . . . . . . . . 12 (((ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦) ∧ ((𝐹𝑚)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))) → ((𝐹𝑚)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
10698, 104, 105syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
107 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
108 ltso 10713 . . . . . . . . . . . . 13 < Or ℝ
109108supex 8919 . . . . . . . . . . . 12 sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ V
11058fvmpt2 6774 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ V) → (𝐺𝑥) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
111107, 109, 110sylancl 586 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺𝑥) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
112106, 111breqtrrd 5090 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥))
113112ralrimiva 3186 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥))
114 fveq2 6666 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
115 fveq2 6666 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
116114, 115breq12d 5075 . . . . . . . . . 10 (𝑥 = 𝑧 → (((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥) ↔ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧)))
117116cbvralv 3457 . . . . . . . . 9 (∀𝑥 ∈ ℝ ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥) ↔ ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧))
118113, 117sylib 219 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧))
11993ffnd 6511 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) Fn ℝ)
12034, 58fmptd 6873 . . . . . . . . . . 11 (𝜑𝐺:ℝ⟶ℝ)
121120ffnd 6511 . . . . . . . . . 10 (𝜑𝐺 Fn ℝ)
122121adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐺 Fn ℝ)
123 reex 10620 . . . . . . . . . 10 ℝ ∈ V
124123a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
125 inidm 4198 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
126 eqidd 2825 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑚)‘𝑧) = ((𝐹𝑚)‘𝑧))
127 eqidd 2825 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
128119, 122, 124, 124, 125, 126, 127ofrfval 7410 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐹𝑚) ∘r𝐺 ↔ ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧)))
129118, 128mpbird 258 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∘r𝐺)
130 itg2le 24255 . . . . . . 7 (((𝐹𝑚):ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ (𝐹𝑚) ∘r𝐺) → (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
13195, 96, 129, 130syl3anc 1365 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
132131ralrimiva 3186 . . . . 5 (𝜑 → ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
13368ffnd 6511 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
134 breq1 5065 . . . . . . . 8 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) → (𝑧 ≤ (∫2𝐺) ↔ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
135134ralrn 6849 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
136133, 135syl 17 . . . . . 6 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
137 2fveq3 6671 . . . . . . . . 9 (𝑛 = 𝑚 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹𝑚)))
138 eqid 2824 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
139 fvex 6679 . . . . . . . . 9 (∫2‘(𝐹𝑚)) ∈ V
140137, 138, 139fvmpt 6764 . . . . . . . 8 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) = (∫2‘(𝐹𝑚)))
141140breq1d 5072 . . . . . . 7 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺) ↔ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺)))
142141ralbiia 3168 . . . . . 6 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
143136, 142syl6bb 288 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺)))
144132, 143mpbird 258 . . . 4 (𝜑 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺))
145 supxrleub 12712 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2𝐺) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺)))
14669, 61, 145syl2anc 584 . . . 4 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺)))
147144, 146mpbird 258 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺))
14862, 147eqbrtrid 5097 . 2 (𝜑𝑆 ≤ (∫2𝐺))
14961, 72, 89, 148xrletrid 12541 1 (𝜑 → (∫2𝐺) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wne 3020  wral 3142  wrex 3143  Vcvv 3499  wss 3939  c0 4294   class class class wbr 5062  cmpt 5142  dom cdm 5553  ran crn 5554   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  r cofr 7401  supcsup 8896  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668  cn 11630  [,)cico 12733  [,]cicc 12734  MblFncmbf 24130  1citg1 24131  2citg2 24132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-ofr 7403  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-rest 16688  df-topgen 16709  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-top 21418  df-topon 21435  df-bases 21470  df-cmp 21911  df-ovol 23980  df-vol 23981  df-mbf 24135  df-itg1 24136  df-itg2 24137
This theorem is referenced by:  itg2i1fseq  24271  itg2cnlem1  24277
  Copyright terms: Public domain W3C validator