MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mono Structured version   Visualization version   GIF version

Theorem itg2mono 25654
Description: The Monotone Convergence Theorem for nonnegative functions. If {(𝐹𝑛):𝑛 ∈ ℕ} is a monotone increasing sequence of positive, measurable, real-valued functions, and 𝐺 is the pointwise limit of the sequence, then (∫2𝐺) is the limit of the sequence {(∫2‘(𝐹𝑛)):𝑛 ∈ ℕ}. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
Assertion
Ref Expression
itg2mono (𝜑 → (∫2𝐺) = 𝑆)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2mono
Dummy variables 𝑓 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mono.3 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
2 rge0ssre 13417 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℝ
3 fss 6704 . . . . . . . . . . . 12 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → (𝐹𝑛):ℝ⟶ℝ)
41, 2, 3sylancl 586 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶ℝ)
54ffvelcdmda 7056 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
65an32s 652 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
76fmpttd 7087 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)):ℕ⟶ℝ)
87frnd 6696 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ)
9 1nn 12197 . . . . . . . . . 10 1 ∈ ℕ
10 eqid 2729 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))
1110, 6dmmptd 6663 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ℕ)
129, 11eleqtrrid 2835 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
1312ne0d 4305 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
14 dm0rn0 5888 . . . . . . . . 9 (dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) = ∅)
1514necon3bii 2977 . . . . . . . 8 (dom (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
1613, 15sylib 218 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅)
17 itg2mono.5 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
187ffnd 6689 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ)
19 breq1 5110 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) → (𝑧𝑦 ↔ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
2019ralrn 7060 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
2118, 20syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦))
22 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2322fveq1d 6860 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑚)‘𝑥))
24 fvex 6871 . . . . . . . . . . . . . 14 ((𝐹𝑚)‘𝑥) ∈ V
2523, 10, 24fvmpt 6968 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
2625breq1d 5117 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑥) ≤ 𝑦))
2726ralbiia 3073 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹𝑚)‘𝑥) ≤ 𝑦)
2823breq1d 5117 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑥) ≤ 𝑦))
2928cbvralvw 3215 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹𝑚)‘𝑥) ≤ 𝑦)
3027, 29bitr4i 278 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3121, 30bitrdi 287 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3231rexbidv 3157 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3317, 32mpbird 257 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦)
348, 16, 33suprcld 12146 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
3534rexrd 11224 . . . . 5 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ*)
36 0red 11177 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ ℝ)
37 fveq2 6858 . . . . . . . . . . 11 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
3837feq1d 6670 . . . . . . . . . 10 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘1):ℝ⟶(0[,)+∞)))
391ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,)+∞))
409a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ)
4138, 39, 40rspcdva 3589 . . . . . . . . 9 (𝜑 → (𝐹‘1):ℝ⟶(0[,)+∞))
4241ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ (0[,)+∞))
43 elrege0 13415 . . . . . . . 8 (((𝐹‘1)‘𝑥) ∈ (0[,)+∞) ↔ (((𝐹‘1)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘1)‘𝑥)))
4442, 43sylib 218 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (((𝐹‘1)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘1)‘𝑥)))
4544simpld 494 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ ℝ)
4644simprd 495 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ ((𝐹‘1)‘𝑥))
4737fveq1d 6860 . . . . . . . . . 10 (𝑛 = 1 → ((𝐹𝑛)‘𝑥) = ((𝐹‘1)‘𝑥))
48 fvex 6871 . . . . . . . . . 10 ((𝐹‘1)‘𝑥) ∈ V
4947, 10, 48fvmpt 6968 . . . . . . . . 9 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) = ((𝐹‘1)‘𝑥))
509, 49ax-mp 5 . . . . . . . 8 ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) = ((𝐹‘1)‘𝑥)
51 fnfvelrn 7052 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
5218, 9, 51sylancl 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘1) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
5350, 52eqeltrrid 2833 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
548, 16, 33, 53suprubd 12145 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐹‘1)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
5536, 45, 34, 46, 54letrd 11331 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 0 ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
56 elxrge0 13418 . . . . 5 (sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ (0[,]+∞) ↔ (sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ* ∧ 0 ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
5735, 55, 56sylanbrc 583 . . . 4 ((𝜑𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ (0[,]+∞))
58 itg2mono.1 . . . 4 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
5957, 58fmptd 7086 . . 3 (𝜑𝐺:ℝ⟶(0[,]+∞))
60 itg2cl 25633 . . 3 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
6159, 60syl 17 . 2 (𝜑 → (∫2𝐺) ∈ ℝ*)
62 itg2mono.6 . . 3 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
63 icossicc 13397 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
64 fss 6704 . . . . . . . 8 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
651, 63, 64sylancl 586 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
66 itg2cl 25633 . . . . . . 7 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
6765, 66syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
6867fmpttd 7087 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
6968frnd 6696 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
70 supxrcl 13275 . . . 4 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
7169, 70syl 17 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
7262, 71eqeltrid 2832 . 2 (𝜑𝑆 ∈ ℝ*)
73 itg2mono.2 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
7473adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
751adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
76 itg2mono.4 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
7776adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
7817adantlr 715 . . . . . . . 8 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
79 simprll 778 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → 𝑓 ∈ dom ∫1)
80 simprlr 779 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → 𝑓r𝐺)
81 simprr 772 . . . . . . . 8 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → ¬ (∫1𝑓) ≤ 𝑆)
8258, 74, 75, 77, 78, 62, 79, 80, 81itg2monolem3 25653 . . . . . . 7 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐺) ∧ ¬ (∫1𝑓) ≤ 𝑆)) → (∫1𝑓) ≤ 𝑆)
8382expr 456 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐺)) → (¬ (∫1𝑓) ≤ 𝑆 → (∫1𝑓) ≤ 𝑆))
8483pm2.18d 127 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐺)) → (∫1𝑓) ≤ 𝑆)
8584expr 456 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐺 → (∫1𝑓) ≤ 𝑆))
8685ralrimiva 3125 . . 3 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆))
87 itg2leub 25635 . . . 4 ((𝐺:ℝ⟶(0[,]+∞) ∧ 𝑆 ∈ ℝ*) → ((∫2𝐺) ≤ 𝑆 ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆)))
8859, 72, 87syl2anc 584 . . 3 (𝜑 → ((∫2𝐺) ≤ 𝑆 ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐺 → (∫1𝑓) ≤ 𝑆)))
8986, 88mpbird 257 . 2 (𝜑 → (∫2𝐺) ≤ 𝑆)
9022feq1d 6670 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐹𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹𝑚):ℝ⟶(0[,)+∞)))
9190cbvralvw 3215 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,)+∞) ↔ ∀𝑚 ∈ ℕ (𝐹𝑚):ℝ⟶(0[,)+∞))
9239, 91sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℕ (𝐹𝑚):ℝ⟶(0[,)+∞))
9392r19.21bi 3229 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚):ℝ⟶(0[,)+∞))
94 fss 6704 . . . . . . . 8 (((𝐹𝑚):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑚):ℝ⟶(0[,]+∞))
9593, 63, 94sylancl 586 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚):ℝ⟶(0[,]+∞))
9659adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝐺:ℝ⟶(0[,]+∞))
978, 16, 333jca 1128 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦))
9897adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦))
9925ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
10018adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ)
101 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑚 ∈ ℕ)
102 fnfvelrn 7052 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) Fn ℕ ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
103100, 101, 102syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))‘𝑚) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
10499, 103eqeltrrd 2829 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)))
105 suprub 12144 . . . . . . . . . . . 12 (((ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))𝑧𝑦) ∧ ((𝐹𝑚)‘𝑥) ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥))) → ((𝐹𝑚)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
10698, 104, 105syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
107 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
108 ltso 11254 . . . . . . . . . . . . 13 < Or ℝ
109108supex 9415 . . . . . . . . . . . 12 sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ V
11058fvmpt2 6979 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ V) → (𝐺𝑥) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
111107, 109, 110sylancl 586 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺𝑥) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
112106, 111breqtrrd 5135 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥))
113112ralrimiva 3125 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥))
114 fveq2 6858 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
115 fveq2 6858 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
116114, 115breq12d 5120 . . . . . . . . . 10 (𝑥 = 𝑧 → (((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥) ↔ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧)))
117116cbvralvw 3215 . . . . . . . . 9 (∀𝑥 ∈ ℝ ((𝐹𝑚)‘𝑥) ≤ (𝐺𝑥) ↔ ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧))
118113, 117sylib 218 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧))
11993ffnd 6689 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) Fn ℝ)
12034, 58fmptd 7086 . . . . . . . . . . 11 (𝜑𝐺:ℝ⟶ℝ)
121120ffnd 6689 . . . . . . . . . 10 (𝜑𝐺 Fn ℝ)
122121adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐺 Fn ℝ)
123 reex 11159 . . . . . . . . . 10 ℝ ∈ V
124123a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
125 inidm 4190 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
126 eqidd 2730 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑚)‘𝑧) = ((𝐹𝑚)‘𝑧))
127 eqidd 2730 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
128119, 122, 124, 124, 125, 126, 127ofrfval 7663 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐹𝑚) ∘r𝐺 ↔ ∀𝑧 ∈ ℝ ((𝐹𝑚)‘𝑧) ≤ (𝐺𝑧)))
129118, 128mpbird 257 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∘r𝐺)
130 itg2le 25640 . . . . . . 7 (((𝐹𝑚):ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ (𝐹𝑚) ∘r𝐺) → (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
13195, 96, 129, 130syl3anc 1373 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
132131ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
13368ffnd 6689 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
134 breq1 5110 . . . . . . . 8 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) → (𝑧 ≤ (∫2𝐺) ↔ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
135134ralrn 7060 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
136133, 135syl 17 . . . . . 6 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺)))
137 2fveq3 6863 . . . . . . . . 9 (𝑛 = 𝑚 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹𝑚)))
138 eqid 2729 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
139 fvex 6871 . . . . . . . . 9 (∫2‘(𝐹𝑚)) ∈ V
140137, 138, 139fvmpt 6968 . . . . . . . 8 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) = (∫2‘(𝐹𝑚)))
141140breq1d 5117 . . . . . . 7 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺) ↔ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺)))
142141ralbiia 3073 . . . . . 6 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘𝑚) ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺))
143136, 142bitrdi 287 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝐹𝑚)) ≤ (∫2𝐺)))
144132, 143mpbird 257 . . . 4 (𝜑 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺))
145 supxrleub 13286 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2𝐺) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺)))
14669, 61, 145syl2anc 584 . . . 4 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))𝑧 ≤ (∫2𝐺)))
147144, 146mpbird 257 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ≤ (∫2𝐺))
14862, 147eqbrtrid 5142 . 2 (𝜑𝑆 ≤ (∫2𝐺))
14961, 72, 89, 148xrletrid 13115 1 (𝜑 → (∫2𝐺) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  r cofr 7652  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cn 12186  [,)cico 13308  [,]cicc 13309  MblFncmbf 25515  1citg1 25516  2citg2 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522
This theorem is referenced by:  itg2i1fseq  25656  itg2cnlem1  25662
  Copyright terms: Public domain W3C validator