MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mono Structured version   Visualization version   GIF version

Theorem itg2mono 25713
Description: The Monotone Convergence Theorem for nonnegative functions. If {(πΉβ€˜π‘›):𝑛 ∈ β„•} is a monotone increasing sequence of positive, measurable, real-valued functions, and 𝐺 is the pointwise limit of the sequence, then (∫2β€˜πΊ) is the limit of the sequence {(∫2β€˜(πΉβ€˜π‘›)):𝑛 ∈ β„•}. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (π‘₯ ∈ ℝ ↦ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
itg2mono.2 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›) ∈ MblFn)
itg2mono.3 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›):β„βŸΆ(0[,)+∞))
itg2mono.4 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›) ∘r ≀ (πΉβ€˜(𝑛 + 1)))
itg2mono.5 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘› ∈ β„• ((πΉβ€˜π‘›)β€˜π‘₯) ≀ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))), ℝ*, < )
Assertion
Ref Expression
itg2mono (πœ‘ β†’ (∫2β€˜πΊ) = 𝑆)
Distinct variable groups:   π‘₯,𝑛,𝑦,𝐺   𝑛,𝐹,π‘₯,𝑦   πœ‘,𝑛,π‘₯,𝑦   𝑆,𝑛,π‘₯,𝑦

Proof of Theorem itg2mono
Dummy variables 𝑓 π‘š 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mono.3 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›):β„βŸΆ(0[,)+∞))
2 rge0ssre 13465 . . . . . . . . . . . 12 (0[,)+∞) βŠ† ℝ
3 fss 6737 . . . . . . . . . . . 12 (((πΉβ€˜π‘›):β„βŸΆ(0[,)+∞) ∧ (0[,)+∞) βŠ† ℝ) β†’ (πΉβ€˜π‘›):β„βŸΆβ„)
41, 2, 3sylancl 584 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›):β„βŸΆβ„)
54ffvelcdmda 7091 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜π‘›)β€˜π‘₯) ∈ ℝ)
65an32s 650 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑛 ∈ β„•) β†’ ((πΉβ€˜π‘›)β€˜π‘₯) ∈ ℝ)
76fmpttd 7122 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)):β„•βŸΆβ„)
87frnd 6729 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) βŠ† ℝ)
9 1nn 12253 . . . . . . . . . 10 1 ∈ β„•
10 eqid 2725 . . . . . . . . . . 11 (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) = (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))
1110, 6dmmptd 6699 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ dom (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) = β„•)
129, 11eleqtrrid 2832 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ 1 ∈ dom (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)))
1312ne0d 4336 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ dom (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) β‰  βˆ…)
14 dm0rn0 5926 . . . . . . . . 9 (dom (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) = βˆ… ↔ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) = βˆ…)
1514necon3bii 2983 . . . . . . . 8 (dom (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) β‰  βˆ… ↔ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) β‰  βˆ…)
1613, 15sylib 217 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) β‰  βˆ…)
17 itg2mono.5 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘› ∈ β„• ((πΉβ€˜π‘›)β€˜π‘₯) ≀ 𝑦)
187ffnd 6722 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) Fn β„•)
19 breq1 5151 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) β†’ (𝑧 ≀ 𝑦 ↔ ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) ≀ 𝑦))
2019ralrn 7095 . . . . . . . . . . 11 ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) Fn β„• β†’ (βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))𝑧 ≀ 𝑦 ↔ βˆ€π‘š ∈ β„• ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) ≀ 𝑦))
2118, 20syl 17 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))𝑧 ≀ 𝑦 ↔ βˆ€π‘š ∈ β„• ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) ≀ 𝑦))
22 fveq2 6894 . . . . . . . . . . . . . . 15 (𝑛 = π‘š β†’ (πΉβ€˜π‘›) = (πΉβ€˜π‘š))
2322fveq1d 6896 . . . . . . . . . . . . . 14 (𝑛 = π‘š β†’ ((πΉβ€˜π‘›)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘₯))
24 fvex 6907 . . . . . . . . . . . . . 14 ((πΉβ€˜π‘š)β€˜π‘₯) ∈ V
2523, 10, 24fvmpt 7002 . . . . . . . . . . . . 13 (π‘š ∈ β„• β†’ ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) = ((πΉβ€˜π‘š)β€˜π‘₯))
2625breq1d 5158 . . . . . . . . . . . 12 (π‘š ∈ β„• β†’ (((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) ≀ 𝑦 ↔ ((πΉβ€˜π‘š)β€˜π‘₯) ≀ 𝑦))
2726ralbiia 3081 . . . . . . . . . . 11 (βˆ€π‘š ∈ β„• ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) ≀ 𝑦 ↔ βˆ€π‘š ∈ β„• ((πΉβ€˜π‘š)β€˜π‘₯) ≀ 𝑦)
2823breq1d 5158 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ (((πΉβ€˜π‘›)β€˜π‘₯) ≀ 𝑦 ↔ ((πΉβ€˜π‘š)β€˜π‘₯) ≀ 𝑦))
2928cbvralvw 3225 . . . . . . . . . . 11 (βˆ€π‘› ∈ β„• ((πΉβ€˜π‘›)β€˜π‘₯) ≀ 𝑦 ↔ βˆ€π‘š ∈ β„• ((πΉβ€˜π‘š)β€˜π‘₯) ≀ 𝑦)
3027, 29bitr4i 277 . . . . . . . . . 10 (βˆ€π‘š ∈ β„• ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) ≀ 𝑦 ↔ βˆ€π‘› ∈ β„• ((πΉβ€˜π‘›)β€˜π‘₯) ≀ 𝑦)
3121, 30bitrdi 286 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))𝑧 ≀ 𝑦 ↔ βˆ€π‘› ∈ β„• ((πΉβ€˜π‘›)β€˜π‘₯) ≀ 𝑦))
3231rexbidv 3169 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (βˆƒπ‘¦ ∈ ℝ βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))𝑧 ≀ 𝑦 ↔ βˆƒπ‘¦ ∈ ℝ βˆ€π‘› ∈ β„• ((πΉβ€˜π‘›)β€˜π‘₯) ≀ 𝑦))
3317, 32mpbird 256 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))𝑧 ≀ 𝑦)
348, 16, 33suprcld 12207 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ ℝ)
3534rexrd 11294 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ ℝ*)
36 0red 11247 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ 0 ∈ ℝ)
37 fveq2 6894 . . . . . . . . . . 11 (𝑛 = 1 β†’ (πΉβ€˜π‘›) = (πΉβ€˜1))
3837feq1d 6706 . . . . . . . . . 10 (𝑛 = 1 β†’ ((πΉβ€˜π‘›):β„βŸΆ(0[,)+∞) ↔ (πΉβ€˜1):β„βŸΆ(0[,)+∞)))
391ralrimiva 3136 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘› ∈ β„• (πΉβ€˜π‘›):β„βŸΆ(0[,)+∞))
409a1i 11 . . . . . . . . . 10 (πœ‘ β†’ 1 ∈ β„•)
4138, 39, 40rspcdva 3608 . . . . . . . . 9 (πœ‘ β†’ (πΉβ€˜1):β„βŸΆ(0[,)+∞))
4241ffvelcdmda 7091 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜1)β€˜π‘₯) ∈ (0[,)+∞))
43 elrege0 13463 . . . . . . . 8 (((πΉβ€˜1)β€˜π‘₯) ∈ (0[,)+∞) ↔ (((πΉβ€˜1)β€˜π‘₯) ∈ ℝ ∧ 0 ≀ ((πΉβ€˜1)β€˜π‘₯)))
4442, 43sylib 217 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (((πΉβ€˜1)β€˜π‘₯) ∈ ℝ ∧ 0 ≀ ((πΉβ€˜1)β€˜π‘₯)))
4544simpld 493 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜1)β€˜π‘₯) ∈ ℝ)
4644simprd 494 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ 0 ≀ ((πΉβ€˜1)β€˜π‘₯))
4737fveq1d 6896 . . . . . . . . . 10 (𝑛 = 1 β†’ ((πΉβ€˜π‘›)β€˜π‘₯) = ((πΉβ€˜1)β€˜π‘₯))
48 fvex 6907 . . . . . . . . . 10 ((πΉβ€˜1)β€˜π‘₯) ∈ V
4947, 10, 48fvmpt 7002 . . . . . . . . 9 (1 ∈ β„• β†’ ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜1) = ((πΉβ€˜1)β€˜π‘₯))
509, 49ax-mp 5 . . . . . . . 8 ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜1) = ((πΉβ€˜1)β€˜π‘₯)
51 fnfvelrn 7087 . . . . . . . . 9 (((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) Fn β„• ∧ 1 ∈ β„•) β†’ ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜1) ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)))
5218, 9, 51sylancl 584 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜1) ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)))
5350, 52eqeltrrid 2830 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜1)β€˜π‘₯) ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)))
548, 16, 33, 53suprubd 12206 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜1)β€˜π‘₯) ≀ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
5536, 45, 34, 46, 54letrd 11401 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ 0 ≀ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
56 elxrge0 13466 . . . . 5 (sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ (0[,]+∞) ↔ (sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ ℝ* ∧ 0 ≀ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < )))
5735, 55, 56sylanbrc 581 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ (0[,]+∞))
58 itg2mono.1 . . . 4 𝐺 = (π‘₯ ∈ ℝ ↦ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
5957, 58fmptd 7121 . . 3 (πœ‘ β†’ 𝐺:β„βŸΆ(0[,]+∞))
60 itg2cl 25692 . . 3 (𝐺:β„βŸΆ(0[,]+∞) β†’ (∫2β€˜πΊ) ∈ ℝ*)
6159, 60syl 17 . 2 (πœ‘ β†’ (∫2β€˜πΊ) ∈ ℝ*)
62 itg2mono.6 . . 3 𝑆 = sup(ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))), ℝ*, < )
63 icossicc 13445 . . . . . . . 8 (0[,)+∞) βŠ† (0[,]+∞)
64 fss 6737 . . . . . . . 8 (((πΉβ€˜π‘›):β„βŸΆ(0[,)+∞) ∧ (0[,)+∞) βŠ† (0[,]+∞)) β†’ (πΉβ€˜π‘›):β„βŸΆ(0[,]+∞))
651, 63, 64sylancl 584 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›):β„βŸΆ(0[,]+∞))
66 itg2cl 25692 . . . . . . 7 ((πΉβ€˜π‘›):β„βŸΆ(0[,]+∞) β†’ (∫2β€˜(πΉβ€˜π‘›)) ∈ ℝ*)
6765, 66syl 17 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (∫2β€˜(πΉβ€˜π‘›)) ∈ ℝ*)
6867fmpttd 7122 . . . . 5 (πœ‘ β†’ (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))):β„•βŸΆβ„*)
6968frnd 6729 . . . 4 (πœ‘ β†’ ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))) βŠ† ℝ*)
70 supxrcl 13326 . . . 4 (ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))) βŠ† ℝ* β†’ sup(ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))), ℝ*, < ) ∈ ℝ*)
7169, 70syl 17 . . 3 (πœ‘ β†’ sup(ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))), ℝ*, < ) ∈ ℝ*)
7262, 71eqeltrid 2829 . 2 (πœ‘ β†’ 𝑆 ∈ ℝ*)
73 itg2mono.2 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›) ∈ MblFn)
7473adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺) ∧ Β¬ (∫1β€˜π‘“) ≀ 𝑆)) ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›) ∈ MblFn)
751adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺) ∧ Β¬ (∫1β€˜π‘“) ≀ 𝑆)) ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›):β„βŸΆ(0[,)+∞))
76 itg2mono.4 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›) ∘r ≀ (πΉβ€˜(𝑛 + 1)))
7776adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺) ∧ Β¬ (∫1β€˜π‘“) ≀ 𝑆)) ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›) ∘r ≀ (πΉβ€˜(𝑛 + 1)))
7817adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺) ∧ Β¬ (∫1β€˜π‘“) ≀ 𝑆)) ∧ π‘₯ ∈ ℝ) β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘› ∈ β„• ((πΉβ€˜π‘›)β€˜π‘₯) ≀ 𝑦)
79 simprll 777 . . . . . . . 8 ((πœ‘ ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺) ∧ Β¬ (∫1β€˜π‘“) ≀ 𝑆)) β†’ 𝑓 ∈ dom ∫1)
80 simprlr 778 . . . . . . . 8 ((πœ‘ ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺) ∧ Β¬ (∫1β€˜π‘“) ≀ 𝑆)) β†’ 𝑓 ∘r ≀ 𝐺)
81 simprr 771 . . . . . . . 8 ((πœ‘ ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺) ∧ Β¬ (∫1β€˜π‘“) ≀ 𝑆)) β†’ Β¬ (∫1β€˜π‘“) ≀ 𝑆)
8258, 74, 75, 77, 78, 62, 79, 80, 81itg2monolem3 25712 . . . . . . 7 ((πœ‘ ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺) ∧ Β¬ (∫1β€˜π‘“) ≀ 𝑆)) β†’ (∫1β€˜π‘“) ≀ 𝑆)
8382expr 455 . . . . . 6 ((πœ‘ ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺)) β†’ (Β¬ (∫1β€˜π‘“) ≀ 𝑆 β†’ (∫1β€˜π‘“) ≀ 𝑆))
8483pm2.18d 127 . . . . 5 ((πœ‘ ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≀ 𝐺)) β†’ (∫1β€˜π‘“) ≀ 𝑆)
8584expr 455 . . . 4 ((πœ‘ ∧ 𝑓 ∈ dom ∫1) β†’ (𝑓 ∘r ≀ 𝐺 β†’ (∫1β€˜π‘“) ≀ 𝑆))
8685ralrimiva 3136 . . 3 (πœ‘ β†’ βˆ€π‘“ ∈ dom ∫1(𝑓 ∘r ≀ 𝐺 β†’ (∫1β€˜π‘“) ≀ 𝑆))
87 itg2leub 25694 . . . 4 ((𝐺:β„βŸΆ(0[,]+∞) ∧ 𝑆 ∈ ℝ*) β†’ ((∫2β€˜πΊ) ≀ 𝑆 ↔ βˆ€π‘“ ∈ dom ∫1(𝑓 ∘r ≀ 𝐺 β†’ (∫1β€˜π‘“) ≀ 𝑆)))
8859, 72, 87syl2anc 582 . . 3 (πœ‘ β†’ ((∫2β€˜πΊ) ≀ 𝑆 ↔ βˆ€π‘“ ∈ dom ∫1(𝑓 ∘r ≀ 𝐺 β†’ (∫1β€˜π‘“) ≀ 𝑆)))
8986, 88mpbird 256 . 2 (πœ‘ β†’ (∫2β€˜πΊ) ≀ 𝑆)
9022feq1d 6706 . . . . . . . . . . 11 (𝑛 = π‘š β†’ ((πΉβ€˜π‘›):β„βŸΆ(0[,)+∞) ↔ (πΉβ€˜π‘š):β„βŸΆ(0[,)+∞)))
9190cbvralvw 3225 . . . . . . . . . 10 (βˆ€π‘› ∈ β„• (πΉβ€˜π‘›):β„βŸΆ(0[,)+∞) ↔ βˆ€π‘š ∈ β„• (πΉβ€˜π‘š):β„βŸΆ(0[,)+∞))
9239, 91sylib 217 . . . . . . . . 9 (πœ‘ β†’ βˆ€π‘š ∈ β„• (πΉβ€˜π‘š):β„βŸΆ(0[,)+∞))
9392r19.21bi 3239 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ β„•) β†’ (πΉβ€˜π‘š):β„βŸΆ(0[,)+∞))
94 fss 6737 . . . . . . . 8 (((πΉβ€˜π‘š):β„βŸΆ(0[,)+∞) ∧ (0[,)+∞) βŠ† (0[,]+∞)) β†’ (πΉβ€˜π‘š):β„βŸΆ(0[,]+∞))
9593, 63, 94sylancl 584 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ β„•) β†’ (πΉβ€˜π‘š):β„βŸΆ(0[,]+∞))
9659adantr 479 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ β„•) β†’ 𝐺:β„βŸΆ(0[,]+∞))
978, 16, 333jca 1125 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) βŠ† ℝ ∧ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) β‰  βˆ… ∧ βˆƒπ‘¦ ∈ ℝ βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))𝑧 ≀ 𝑦))
9897adantlr 713 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ (ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) βŠ† ℝ ∧ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) β‰  βˆ… ∧ βˆƒπ‘¦ ∈ ℝ βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))𝑧 ≀ 𝑦))
9925ad2antlr 725 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) = ((πΉβ€˜π‘š)β€˜π‘₯))
10018adantlr 713 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) Fn β„•)
101 simplr 767 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ π‘š ∈ β„•)
102 fnfvelrn 7087 . . . . . . . . . . . . . 14 (((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) Fn β„• ∧ π‘š ∈ β„•) β†’ ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)))
103100, 101, 102syl2anc 582 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ ((𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))β€˜π‘š) ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)))
10499, 103eqeltrrd 2826 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜π‘š)β€˜π‘₯) ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)))
105 suprub 12205 . . . . . . . . . . . 12 (((ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) βŠ† ℝ ∧ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)) β‰  βˆ… ∧ βˆƒπ‘¦ ∈ ℝ βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))𝑧 ≀ 𝑦) ∧ ((πΉβ€˜π‘š)β€˜π‘₯) ∈ ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯))) β†’ ((πΉβ€˜π‘š)β€˜π‘₯) ≀ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
10698, 104, 105syl2anc 582 . . . . . . . . . . 11 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜π‘š)β€˜π‘₯) ≀ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
107 simpr 483 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ π‘₯ ∈ ℝ)
108 ltso 11324 . . . . . . . . . . . . 13 < Or ℝ
109108supex 9486 . . . . . . . . . . . 12 sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ V
11058fvmpt2 7013 . . . . . . . . . . . 12 ((π‘₯ ∈ ℝ ∧ sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ) ∈ V) β†’ (πΊβ€˜π‘₯) = sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
111107, 109, 110sylancl 584 . . . . . . . . . . 11 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ (πΊβ€˜π‘₯) = sup(ran (𝑛 ∈ β„• ↦ ((πΉβ€˜π‘›)β€˜π‘₯)), ℝ, < ))
112106, 111breqtrrd 5176 . . . . . . . . . 10 (((πœ‘ ∧ π‘š ∈ β„•) ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜π‘š)β€˜π‘₯) ≀ (πΊβ€˜π‘₯))
113112ralrimiva 3136 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ β„•) β†’ βˆ€π‘₯ ∈ ℝ ((πΉβ€˜π‘š)β€˜π‘₯) ≀ (πΊβ€˜π‘₯))
114 fveq2 6894 . . . . . . . . . . 11 (π‘₯ = 𝑧 β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘§))
115 fveq2 6894 . . . . . . . . . . 11 (π‘₯ = 𝑧 β†’ (πΊβ€˜π‘₯) = (πΊβ€˜π‘§))
116114, 115breq12d 5161 . . . . . . . . . 10 (π‘₯ = 𝑧 β†’ (((πΉβ€˜π‘š)β€˜π‘₯) ≀ (πΊβ€˜π‘₯) ↔ ((πΉβ€˜π‘š)β€˜π‘§) ≀ (πΊβ€˜π‘§)))
117116cbvralvw 3225 . . . . . . . . 9 (βˆ€π‘₯ ∈ ℝ ((πΉβ€˜π‘š)β€˜π‘₯) ≀ (πΊβ€˜π‘₯) ↔ βˆ€π‘§ ∈ ℝ ((πΉβ€˜π‘š)β€˜π‘§) ≀ (πΊβ€˜π‘§))
118113, 117sylib 217 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ β„•) β†’ βˆ€π‘§ ∈ ℝ ((πΉβ€˜π‘š)β€˜π‘§) ≀ (πΊβ€˜π‘§))
11993ffnd 6722 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ β„•) β†’ (πΉβ€˜π‘š) Fn ℝ)
12034, 58fmptd 7121 . . . . . . . . . . 11 (πœ‘ β†’ 𝐺:β„βŸΆβ„)
121120ffnd 6722 . . . . . . . . . 10 (πœ‘ β†’ 𝐺 Fn ℝ)
122121adantr 479 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ β„•) β†’ 𝐺 Fn ℝ)
123 reex 11229 . . . . . . . . . 10 ℝ ∈ V
124123a1i 11 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ β„•) β†’ ℝ ∈ V)
125 inidm 4218 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
126 eqidd 2726 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ β„•) ∧ 𝑧 ∈ ℝ) β†’ ((πΉβ€˜π‘š)β€˜π‘§) = ((πΉβ€˜π‘š)β€˜π‘§))
127 eqidd 2726 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ β„•) ∧ 𝑧 ∈ ℝ) β†’ (πΊβ€˜π‘§) = (πΊβ€˜π‘§))
128119, 122, 124, 124, 125, 126, 127ofrfval 7693 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ β„•) β†’ ((πΉβ€˜π‘š) ∘r ≀ 𝐺 ↔ βˆ€π‘§ ∈ ℝ ((πΉβ€˜π‘š)β€˜π‘§) ≀ (πΊβ€˜π‘§)))
129118, 128mpbird 256 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ β„•) β†’ (πΉβ€˜π‘š) ∘r ≀ 𝐺)
130 itg2le 25699 . . . . . . 7 (((πΉβ€˜π‘š):β„βŸΆ(0[,]+∞) ∧ 𝐺:β„βŸΆ(0[,]+∞) ∧ (πΉβ€˜π‘š) ∘r ≀ 𝐺) β†’ (∫2β€˜(πΉβ€˜π‘š)) ≀ (∫2β€˜πΊ))
13195, 96, 129, 130syl3anc 1368 . . . . . 6 ((πœ‘ ∧ π‘š ∈ β„•) β†’ (∫2β€˜(πΉβ€˜π‘š)) ≀ (∫2β€˜πΊ))
132131ralrimiva 3136 . . . . 5 (πœ‘ β†’ βˆ€π‘š ∈ β„• (∫2β€˜(πΉβ€˜π‘š)) ≀ (∫2β€˜πΊ))
13368ffnd 6722 . . . . . . 7 (πœ‘ β†’ (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))) Fn β„•)
134 breq1 5151 . . . . . . . 8 (𝑧 = ((𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))β€˜π‘š) β†’ (𝑧 ≀ (∫2β€˜πΊ) ↔ ((𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))β€˜π‘š) ≀ (∫2β€˜πΊ)))
135134ralrn 7095 . . . . . . 7 ((𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))) Fn β„• β†’ (βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))𝑧 ≀ (∫2β€˜πΊ) ↔ βˆ€π‘š ∈ β„• ((𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))β€˜π‘š) ≀ (∫2β€˜πΊ)))
136133, 135syl 17 . . . . . 6 (πœ‘ β†’ (βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))𝑧 ≀ (∫2β€˜πΊ) ↔ βˆ€π‘š ∈ β„• ((𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))β€˜π‘š) ≀ (∫2β€˜πΊ)))
137 2fveq3 6899 . . . . . . . . 9 (𝑛 = π‘š β†’ (∫2β€˜(πΉβ€˜π‘›)) = (∫2β€˜(πΉβ€˜π‘š)))
138 eqid 2725 . . . . . . . . 9 (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))) = (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))
139 fvex 6907 . . . . . . . . 9 (∫2β€˜(πΉβ€˜π‘š)) ∈ V
140137, 138, 139fvmpt 7002 . . . . . . . 8 (π‘š ∈ β„• β†’ ((𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))β€˜π‘š) = (∫2β€˜(πΉβ€˜π‘š)))
141140breq1d 5158 . . . . . . 7 (π‘š ∈ β„• β†’ (((𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))β€˜π‘š) ≀ (∫2β€˜πΊ) ↔ (∫2β€˜(πΉβ€˜π‘š)) ≀ (∫2β€˜πΊ)))
142141ralbiia 3081 . . . . . 6 (βˆ€π‘š ∈ β„• ((𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))β€˜π‘š) ≀ (∫2β€˜πΊ) ↔ βˆ€π‘š ∈ β„• (∫2β€˜(πΉβ€˜π‘š)) ≀ (∫2β€˜πΊ))
143136, 142bitrdi 286 . . . . 5 (πœ‘ β†’ (βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))𝑧 ≀ (∫2β€˜πΊ) ↔ βˆ€π‘š ∈ β„• (∫2β€˜(πΉβ€˜π‘š)) ≀ (∫2β€˜πΊ)))
144132, 143mpbird 256 . . . 4 (πœ‘ β†’ βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))𝑧 ≀ (∫2β€˜πΊ))
145 supxrleub 13337 . . . . 5 ((ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))) βŠ† ℝ* ∧ (∫2β€˜πΊ) ∈ ℝ*) β†’ (sup(ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))), ℝ*, < ) ≀ (∫2β€˜πΊ) ↔ βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))𝑧 ≀ (∫2β€˜πΊ)))
14669, 61, 145syl2anc 582 . . . 4 (πœ‘ β†’ (sup(ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))), ℝ*, < ) ≀ (∫2β€˜πΊ) ↔ βˆ€π‘§ ∈ ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›)))𝑧 ≀ (∫2β€˜πΊ)))
147144, 146mpbird 256 . . 3 (πœ‘ β†’ sup(ran (𝑛 ∈ β„• ↦ (∫2β€˜(πΉβ€˜π‘›))), ℝ*, < ) ≀ (∫2β€˜πΊ))
14862, 147eqbrtrid 5183 . 2 (πœ‘ β†’ 𝑆 ≀ (∫2β€˜πΊ))
14961, 72, 89, 148xrletrid 13166 1 (πœ‘ β†’ (∫2β€˜πΊ) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  Vcvv 3463   βŠ† wss 3945  βˆ…c0 4323   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5677  ran crn 5678   Fn wfn 6542  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417   ∘r cofr 7682  supcsup 9463  β„cr 11137  0cc0 11138  1c1 11139   + caddc 11141  +∞cpnf 11275  β„*cxr 11277   < clt 11278   ≀ cle 11279  β„•cn 12242  [,)cico 13358  [,]cicc 13359  MblFncmbf 25573  βˆ«1citg1 25574  βˆ«2citg2 25575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cc 10458  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-ofr 7684  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-rlim 15465  df-sum 15665  df-rest 17403  df-topgen 17424  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-mopn 21279  df-top 22826  df-topon 22843  df-bases 22879  df-cmp 23321  df-ovol 25423  df-vol 25424  df-mbf 25578  df-itg1 25579  df-itg2 25580
This theorem is referenced by:  itg2i1fseq  25715  itg2cnlem1  25721
  Copyright terms: Public domain W3C validator