MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1 Structured version   Visualization version   GIF version

Theorem grur1 10720
Description: A characterization of Grothendieck universes, part 2. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
grur1 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 = (𝑅1𝐴))

Proof of Theorem grur1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nss 3995 . . . . 5 𝑈 ⊆ (𝑅1𝐴) ↔ ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)))
2 fveqeq2 6839 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((rank‘𝑦) = 𝐴 ↔ (rank‘𝑥) = 𝐴))
32rspcev 3573 . . . . . . . . . 10 ((𝑥𝑈 ∧ (rank‘𝑥) = 𝐴) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴)
43ex 412 . . . . . . . . 9 (𝑥𝑈 → ((rank‘𝑥) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
54ad2antrl 728 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ((rank‘𝑥) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
6 simplr 768 . . . . . . . . . . . 12 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑈 (𝑅1 “ On))
7 simprl 770 . . . . . . . . . . . 12 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑥𝑈)
8 r1elssi 9707 . . . . . . . . . . . . 13 (𝑈 (𝑅1 “ On) → 𝑈 (𝑅1 “ On))
98sseld 3929 . . . . . . . . . . . 12 (𝑈 (𝑅1 “ On) → (𝑥𝑈𝑥 (𝑅1 “ On)))
106, 7, 9sylc 65 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑥 (𝑅1 “ On))
11 tcrank 9786 . . . . . . . . . . 11 (𝑥 (𝑅1 “ On) → (rank‘𝑥) = (rank “ (TC‘𝑥)))
1210, 11syl 17 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (rank‘𝑥) = (rank “ (TC‘𝑥)))
1312eleq2d 2819 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank‘𝑥) ↔ 𝐴 ∈ (rank “ (TC‘𝑥))))
14 gruelss 10694 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝑥𝑈)
15 grutr 10693 . . . . . . . . . . . . 13 (𝑈 ∈ Univ → Tr 𝑈)
1615adantr 480 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → Tr 𝑈)
17 vex 3441 . . . . . . . . . . . . 13 𝑥 ∈ V
18 tcmin 9638 . . . . . . . . . . . . 13 (𝑥 ∈ V → ((𝑥𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈))
1917, 18ax-mp 5 . . . . . . . . . . . 12 ((𝑥𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈)
2014, 16, 19syl2anc 584 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (TC‘𝑥) ⊆ 𝑈)
21 rankf 9696 . . . . . . . . . . . . 13 rank: (𝑅1 “ On)⟶On
22 ffun 6661 . . . . . . . . . . . . 13 (rank: (𝑅1 “ On)⟶On → Fun rank)
2321, 22ax-mp 5 . . . . . . . . . . . 12 Fun rank
24 fvelima 6895 . . . . . . . . . . . 12 ((Fun rank ∧ 𝐴 ∈ (rank “ (TC‘𝑥))) → ∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴)
2523, 24mpan 690 . . . . . . . . . . 11 (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴)
26 ssrexv 4000 . . . . . . . . . . 11 ((TC‘𝑥) ⊆ 𝑈 → (∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2720, 25, 26syl2im 40 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2827ad2ant2r 747 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2913, 28sylbid 240 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank‘𝑥) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
30 simprr 772 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ¬ 𝑥 ∈ (𝑅1𝐴))
31 ne0i 4290 . . . . . . . . . . . . . . 15 (𝑥𝑈𝑈 ≠ ∅)
32 gruina.1 . . . . . . . . . . . . . . . 16 𝐴 = (𝑈 ∩ On)
3332gruina 10718 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
3431, 33sylan2 593 . . . . . . . . . . . . . 14 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ Inacc)
35 inawina 10590 . . . . . . . . . . . . . 14 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
36 winaon 10588 . . . . . . . . . . . . . 14 (𝐴 ∈ Inaccw𝐴 ∈ On)
3734, 35, 363syl 18 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ On)
38 r1fnon 9669 . . . . . . . . . . . . . 14 𝑅1 Fn On
39 fndm 6591 . . . . . . . . . . . . . 14 (𝑅1 Fn On → dom 𝑅1 = On)
4038, 39ax-mp 5 . . . . . . . . . . . . 13 dom 𝑅1 = On
4137, 40eleqtrrdi 2844 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ dom 𝑅1)
4241ad2ant2r 747 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝐴 ∈ dom 𝑅1)
43 rankr1ag 9704 . . . . . . . . . . 11 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
4410, 42, 43syl2anc 584 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
4530, 44mtbid 324 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ¬ (rank‘𝑥) ∈ 𝐴)
46 rankon 9697 . . . . . . . . . . . . 13 (rank‘𝑥) ∈ On
47 eloni 6323 . . . . . . . . . . . . . 14 ((rank‘𝑥) ∈ On → Ord (rank‘𝑥))
48 eloni 6323 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Ord 𝐴)
49 ordtri3or 6345 . . . . . . . . . . . . . 14 ((Ord (rank‘𝑥) ∧ Ord 𝐴) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
5047, 48, 49syl2an 596 . . . . . . . . . . . . 13 (((rank‘𝑥) ∈ On ∧ 𝐴 ∈ On) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
5146, 37, 50sylancr 587 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
52 3orass 1089 . . . . . . . . . . . 12 (((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)) ↔ ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5351, 52sylib 218 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5453ord 864 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (¬ (rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5554ad2ant2r 747 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (¬ (rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5645, 55mpd 15 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
575, 29, 56mpjaod 860 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴)
5857ex 412 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → ((𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
5958exlimdv 1934 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
601, 59biimtrid 242 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (¬ 𝑈 ⊆ (𝑅1𝐴) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
61 simpll 766 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ∈ Univ)
62 ne0i 4290 . . . . . . . . . 10 (𝑦𝑈𝑈 ≠ ∅)
6362, 33sylan2 593 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑦𝑈) → 𝐴 ∈ Inacc)
6463ad2ant2r 747 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ Inacc)
6564, 35, 363syl 18 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ On)
66 simprl 770 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑦𝑈)
67 fveq2 6830 . . . . . . . . . 10 ((rank‘𝑦) = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘𝐴))
6867ad2antll 729 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = (cf‘𝐴))
69 elina 10587 . . . . . . . . . . 11 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
7069simp2bi 1146 . . . . . . . . . 10 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
7164, 70syl 17 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘𝐴) = 𝐴)
7268, 71eqtrd 2768 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = 𝐴)
73 rankcf 10677 . . . . . . . . 9 ¬ 𝑦 ≺ (cf‘(rank‘𝑦))
74 fvex 6843 . . . . . . . . . 10 (cf‘(rank‘𝑦)) ∈ V
75 vex 3441 . . . . . . . . . 10 𝑦 ∈ V
76 domtri 10456 . . . . . . . . . 10 (((cf‘(rank‘𝑦)) ∈ V ∧ 𝑦 ∈ V) → ((cf‘(rank‘𝑦)) ≼ 𝑦 ↔ ¬ 𝑦 ≺ (cf‘(rank‘𝑦))))
7774, 75, 76mp2an 692 . . . . . . . . 9 ((cf‘(rank‘𝑦)) ≼ 𝑦 ↔ ¬ 𝑦 ≺ (cf‘(rank‘𝑦)))
7873, 77mpbir 231 . . . . . . . 8 (cf‘(rank‘𝑦)) ≼ 𝑦
7972, 78eqbrtrrdi 5135 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴𝑦)
80 grudomon 10717 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝑦𝑈𝐴𝑦)) → 𝐴𝑈)
8161, 65, 66, 79, 80syl112anc 1376 . . . . . 6 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴𝑈)
82 elin 3914 . . . . . . . . 9 (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴𝑈𝐴 ∈ On))
8382biimpri 228 . . . . . . . 8 ((𝐴𝑈𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On))
8483, 32eleqtrrdi 2844 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → 𝐴𝐴)
85 ordirr 6331 . . . . . . . . 9 (Ord 𝐴 → ¬ 𝐴𝐴)
8648, 85syl 17 . . . . . . . 8 (𝐴 ∈ On → ¬ 𝐴𝐴)
8786adantl 481 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → ¬ 𝐴𝐴)
8884, 87pm2.21dd 195 . . . . . 6 ((𝐴𝑈𝐴 ∈ On) → 𝑈 ⊆ (𝑅1𝐴))
8981, 65, 88syl2anc 584 . . . . 5 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ⊆ (𝑅1𝐴))
9089rexlimdvaa 3135 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (∃𝑦𝑈 (rank‘𝑦) = 𝐴𝑈 ⊆ (𝑅1𝐴)))
9160, 90syld 47 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (¬ 𝑈 ⊆ (𝑅1𝐴) → 𝑈 ⊆ (𝑅1𝐴)))
9291pm2.18d 127 . 2 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 ⊆ (𝑅1𝐴))
9332grur1a 10719 . . 3 (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)
9493adantr 480 . 2 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (𝑅1𝐴) ⊆ 𝑈)
9592, 94eqssd 3948 1 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 = (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cin 3897  wss 3898  c0 4282  𝒫 cpw 4551   cuni 4860   class class class wbr 5095  Tr wtr 5202  dom cdm 5621  cima 5624  Ord word 6312  Oncon0 6313  Fun wfun 6482   Fn wfn 6483  wf 6484  cfv 6488  cdom 8875  csdm 8876  TCctc 9633  𝑅1cr1 9664  rankcrnk 9665  cfccf 9839  Inaccwcwina 10582  Inacccina 10583  Univcgru 10690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-ac2 10363
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-tc 9634  df-r1 9666  df-rank 9667  df-card 9841  df-cf 9843  df-acn 9844  df-ac 10016  df-wina 10584  df-ina 10585  df-gru 10691
This theorem is referenced by:  grutsk  10722  bj-grur1  37130  grurankcld  44353
  Copyright terms: Public domain W3C validator