MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1 Structured version   Visualization version   GIF version

Theorem grur1 10711
Description: A characterization of Grothendieck universes, part 2. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
grur1 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 = (𝑅1𝐴))

Proof of Theorem grur1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nss 3999 . . . . 5 𝑈 ⊆ (𝑅1𝐴) ↔ ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)))
2 fveqeq2 6831 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((rank‘𝑦) = 𝐴 ↔ (rank‘𝑥) = 𝐴))
32rspcev 3577 . . . . . . . . . 10 ((𝑥𝑈 ∧ (rank‘𝑥) = 𝐴) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴)
43ex 412 . . . . . . . . 9 (𝑥𝑈 → ((rank‘𝑥) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
54ad2antrl 728 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ((rank‘𝑥) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
6 simplr 768 . . . . . . . . . . . 12 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑈 (𝑅1 “ On))
7 simprl 770 . . . . . . . . . . . 12 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑥𝑈)
8 r1elssi 9698 . . . . . . . . . . . . 13 (𝑈 (𝑅1 “ On) → 𝑈 (𝑅1 “ On))
98sseld 3933 . . . . . . . . . . . 12 (𝑈 (𝑅1 “ On) → (𝑥𝑈𝑥 (𝑅1 “ On)))
106, 7, 9sylc 65 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑥 (𝑅1 “ On))
11 tcrank 9777 . . . . . . . . . . 11 (𝑥 (𝑅1 “ On) → (rank‘𝑥) = (rank “ (TC‘𝑥)))
1210, 11syl 17 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (rank‘𝑥) = (rank “ (TC‘𝑥)))
1312eleq2d 2817 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank‘𝑥) ↔ 𝐴 ∈ (rank “ (TC‘𝑥))))
14 gruelss 10685 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝑥𝑈)
15 grutr 10684 . . . . . . . . . . . . 13 (𝑈 ∈ Univ → Tr 𝑈)
1615adantr 480 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → Tr 𝑈)
17 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
18 tcmin 9629 . . . . . . . . . . . . 13 (𝑥 ∈ V → ((𝑥𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈))
1917, 18ax-mp 5 . . . . . . . . . . . 12 ((𝑥𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈)
2014, 16, 19syl2anc 584 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (TC‘𝑥) ⊆ 𝑈)
21 rankf 9687 . . . . . . . . . . . . 13 rank: (𝑅1 “ On)⟶On
22 ffun 6654 . . . . . . . . . . . . 13 (rank: (𝑅1 “ On)⟶On → Fun rank)
2321, 22ax-mp 5 . . . . . . . . . . . 12 Fun rank
24 fvelima 6887 . . . . . . . . . . . 12 ((Fun rank ∧ 𝐴 ∈ (rank “ (TC‘𝑥))) → ∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴)
2523, 24mpan 690 . . . . . . . . . . 11 (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴)
26 ssrexv 4004 . . . . . . . . . . 11 ((TC‘𝑥) ⊆ 𝑈 → (∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2720, 25, 26syl2im 40 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2827ad2ant2r 747 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2913, 28sylbid 240 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank‘𝑥) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
30 simprr 772 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ¬ 𝑥 ∈ (𝑅1𝐴))
31 ne0i 4291 . . . . . . . . . . . . . . 15 (𝑥𝑈𝑈 ≠ ∅)
32 gruina.1 . . . . . . . . . . . . . . . 16 𝐴 = (𝑈 ∩ On)
3332gruina 10709 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
3431, 33sylan2 593 . . . . . . . . . . . . . 14 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ Inacc)
35 inawina 10581 . . . . . . . . . . . . . 14 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
36 winaon 10579 . . . . . . . . . . . . . 14 (𝐴 ∈ Inaccw𝐴 ∈ On)
3734, 35, 363syl 18 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ On)
38 r1fnon 9660 . . . . . . . . . . . . . 14 𝑅1 Fn On
39 fndm 6584 . . . . . . . . . . . . . 14 (𝑅1 Fn On → dom 𝑅1 = On)
4038, 39ax-mp 5 . . . . . . . . . . . . 13 dom 𝑅1 = On
4137, 40eleqtrrdi 2842 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ dom 𝑅1)
4241ad2ant2r 747 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝐴 ∈ dom 𝑅1)
43 rankr1ag 9695 . . . . . . . . . . 11 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
4410, 42, 43syl2anc 584 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
4530, 44mtbid 324 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ¬ (rank‘𝑥) ∈ 𝐴)
46 rankon 9688 . . . . . . . . . . . . 13 (rank‘𝑥) ∈ On
47 eloni 6316 . . . . . . . . . . . . . 14 ((rank‘𝑥) ∈ On → Ord (rank‘𝑥))
48 eloni 6316 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Ord 𝐴)
49 ordtri3or 6338 . . . . . . . . . . . . . 14 ((Ord (rank‘𝑥) ∧ Ord 𝐴) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
5047, 48, 49syl2an 596 . . . . . . . . . . . . 13 (((rank‘𝑥) ∈ On ∧ 𝐴 ∈ On) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
5146, 37, 50sylancr 587 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
52 3orass 1089 . . . . . . . . . . . 12 (((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)) ↔ ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5351, 52sylib 218 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5453ord 864 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (¬ (rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5554ad2ant2r 747 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (¬ (rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5645, 55mpd 15 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
575, 29, 56mpjaod 860 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴)
5857ex 412 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → ((𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
5958exlimdv 1934 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
601, 59biimtrid 242 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (¬ 𝑈 ⊆ (𝑅1𝐴) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
61 simpll 766 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ∈ Univ)
62 ne0i 4291 . . . . . . . . . 10 (𝑦𝑈𝑈 ≠ ∅)
6362, 33sylan2 593 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑦𝑈) → 𝐴 ∈ Inacc)
6463ad2ant2r 747 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ Inacc)
6564, 35, 363syl 18 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ On)
66 simprl 770 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑦𝑈)
67 fveq2 6822 . . . . . . . . . 10 ((rank‘𝑦) = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘𝐴))
6867ad2antll 729 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = (cf‘𝐴))
69 elina 10578 . . . . . . . . . . 11 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
7069simp2bi 1146 . . . . . . . . . 10 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
7164, 70syl 17 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘𝐴) = 𝐴)
7268, 71eqtrd 2766 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = 𝐴)
73 rankcf 10668 . . . . . . . . 9 ¬ 𝑦 ≺ (cf‘(rank‘𝑦))
74 fvex 6835 . . . . . . . . . 10 (cf‘(rank‘𝑦)) ∈ V
75 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
76 domtri 10447 . . . . . . . . . 10 (((cf‘(rank‘𝑦)) ∈ V ∧ 𝑦 ∈ V) → ((cf‘(rank‘𝑦)) ≼ 𝑦 ↔ ¬ 𝑦 ≺ (cf‘(rank‘𝑦))))
7774, 75, 76mp2an 692 . . . . . . . . 9 ((cf‘(rank‘𝑦)) ≼ 𝑦 ↔ ¬ 𝑦 ≺ (cf‘(rank‘𝑦)))
7873, 77mpbir 231 . . . . . . . 8 (cf‘(rank‘𝑦)) ≼ 𝑦
7972, 78eqbrtrrdi 5131 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴𝑦)
80 grudomon 10708 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝑦𝑈𝐴𝑦)) → 𝐴𝑈)
8161, 65, 66, 79, 80syl112anc 1376 . . . . . 6 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴𝑈)
82 elin 3918 . . . . . . . . 9 (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴𝑈𝐴 ∈ On))
8382biimpri 228 . . . . . . . 8 ((𝐴𝑈𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On))
8483, 32eleqtrrdi 2842 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → 𝐴𝐴)
85 ordirr 6324 . . . . . . . . 9 (Ord 𝐴 → ¬ 𝐴𝐴)
8648, 85syl 17 . . . . . . . 8 (𝐴 ∈ On → ¬ 𝐴𝐴)
8786adantl 481 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → ¬ 𝐴𝐴)
8884, 87pm2.21dd 195 . . . . . 6 ((𝐴𝑈𝐴 ∈ On) → 𝑈 ⊆ (𝑅1𝐴))
8981, 65, 88syl2anc 584 . . . . 5 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ⊆ (𝑅1𝐴))
9089rexlimdvaa 3134 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (∃𝑦𝑈 (rank‘𝑦) = 𝐴𝑈 ⊆ (𝑅1𝐴)))
9160, 90syld 47 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (¬ 𝑈 ⊆ (𝑅1𝐴) → 𝑈 ⊆ (𝑅1𝐴)))
9291pm2.18d 127 . 2 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 ⊆ (𝑅1𝐴))
9332grur1a 10710 . . 3 (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)
9493adantr 480 . 2 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (𝑅1𝐴) ⊆ 𝑈)
9592, 94eqssd 3952 1 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 = (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550   cuni 4859   class class class wbr 5091  Tr wtr 5198  dom cdm 5616  cima 5619  Ord word 6305  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  cdom 8867  csdm 8868  TCctc 9624  𝑅1cr1 9655  rankcrnk 9656  cfccf 9830  Inaccwcwina 10573  Inacccina 10574  Univcgru 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-tc 9625  df-r1 9657  df-rank 9658  df-card 9832  df-cf 9834  df-acn 9835  df-ac 10007  df-wina 10575  df-ina 10576  df-gru 10682
This theorem is referenced by:  grutsk  10713  bj-grur1  37103  grurankcld  44272
  Copyright terms: Public domain W3C validator