Step | Hyp | Ref
| Expression |
1 | | nss 3954 |
. . . . 5
⊢ (¬
𝑈 ⊆
(𝑅1‘𝐴) ↔ ∃𝑥(𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) |
2 | | fveqeq2 6667 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((rank‘𝑦) = 𝐴 ↔ (rank‘𝑥) = 𝐴)) |
3 | 2 | rspcev 3541 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑈 ∧ (rank‘𝑥) = 𝐴) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴) |
4 | 3 | ex 416 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑈 → ((rank‘𝑥) = 𝐴 → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
5 | 4 | ad2antrl 727 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ((rank‘𝑥) = 𝐴 → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
6 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → 𝑈 ∈ ∪
(𝑅1 “ On)) |
7 | | simprl 770 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → 𝑥 ∈ 𝑈) |
8 | | r1elssi 9267 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ ∪ (𝑅1 “ On) → 𝑈 ⊆ ∪ (𝑅1 “ On)) |
9 | 8 | sseld 3891 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝑈 → 𝑥 ∈ ∪
(𝑅1 “ On))) |
10 | 6, 7, 9 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → 𝑥 ∈ ∪
(𝑅1 “ On)) |
11 | | tcrank 9346 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) →
(rank‘𝑥) = (rank
“ (TC‘𝑥))) |
12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (rank‘𝑥) = (rank “
(TC‘𝑥))) |
13 | 12 | eleq2d 2837 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (𝐴 ∈ (rank‘𝑥) ↔ 𝐴 ∈ (rank “ (TC‘𝑥)))) |
14 | | gruelss 10254 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ 𝑈) |
15 | | grutr 10253 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ Univ → Tr 𝑈) |
16 | 15 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → Tr 𝑈) |
17 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
18 | | tcmin 9216 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ V → ((𝑥 ⊆ 𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈)) |
19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ 𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈) |
20 | 14, 16, 19 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (TC‘𝑥) ⊆ 𝑈) |
21 | | rankf 9256 |
. . . . . . . . . . . . 13
⊢
rank:∪ (𝑅1 “
On)⟶On |
22 | | ffun 6501 |
. . . . . . . . . . . . 13
⊢
(rank:∪ (𝑅1 “
On)⟶On → Fun rank) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun
rank |
24 | | fvelima 6719 |
. . . . . . . . . . . 12
⊢ ((Fun
rank ∧ 𝐴 ∈ (rank
“ (TC‘𝑥)))
→ ∃𝑦 ∈
(TC‘𝑥)(rank‘𝑦) = 𝐴) |
25 | 23, 24 | mpan 689 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (rank “
(TC‘𝑥)) →
∃𝑦 ∈
(TC‘𝑥)(rank‘𝑦) = 𝐴) |
26 | | ssrexv 3959 |
. . . . . . . . . . 11
⊢
((TC‘𝑥)
⊆ 𝑈 →
(∃𝑦 ∈
(TC‘𝑥)(rank‘𝑦) = 𝐴 → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
27 | 20, 25, 26 | syl2im 40 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
28 | 27 | ad2ant2r 746 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
29 | 13, 28 | sylbid 243 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (𝐴 ∈ (rank‘𝑥) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
30 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ¬ 𝑥 ∈
(𝑅1‘𝐴)) |
31 | | ne0i 4233 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑈 → 𝑈 ≠ ∅) |
32 | | gruina.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 = (𝑈 ∩ On) |
33 | 32 | gruina 10278 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc) |
34 | 31, 33 | sylan2 595 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ Inacc) |
35 | | inawina 10150 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Inacc → 𝐴 ∈
Inaccw) |
36 | | winaon 10148 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Inaccw →
𝐴 ∈
On) |
37 | 34, 35, 36 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ On) |
38 | | r1fnon 9229 |
. . . . . . . . . . . . . 14
⊢
𝑅1 Fn On |
39 | | fndm 6436 |
. . . . . . . . . . . . . 14
⊢
(𝑅1 Fn On → dom 𝑅1 =
On) |
40 | 38, 39 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ dom
𝑅1 = On |
41 | 37, 40 | eleqtrrdi 2863 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ dom
𝑅1) |
42 | 41 | ad2ant2r 746 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → 𝐴 ∈ dom
𝑅1) |
43 | | rankr1ag 9264 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom
𝑅1) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
44 | 10, 42, 43 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
45 | 30, 44 | mtbid 327 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ¬
(rank‘𝑥) ∈ 𝐴) |
46 | | rankon 9257 |
. . . . . . . . . . . . 13
⊢
(rank‘𝑥)
∈ On |
47 | | eloni 6179 |
. . . . . . . . . . . . . 14
⊢
((rank‘𝑥)
∈ On → Ord (rank‘𝑥)) |
48 | | eloni 6179 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → Ord 𝐴) |
49 | | ordtri3or 6201 |
. . . . . . . . . . . . . 14
⊢ ((Ord
(rank‘𝑥) ∧ Ord
𝐴) →
((rank‘𝑥) ∈
𝐴 ∨ (rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥))) |
50 | 47, 48, 49 | syl2an 598 |
. . . . . . . . . . . . 13
⊢
(((rank‘𝑥)
∈ On ∧ 𝐴 ∈
On) → ((rank‘𝑥)
∈ 𝐴 ∨
(rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥))) |
51 | 46, 37, 50 | sylancr 590 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥))) |
52 | | 3orass 1087 |
. . . . . . . . . . . 12
⊢
(((rank‘𝑥)
∈ 𝐴 ∨
(rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)) ↔ ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)))) |
53 | 51, 52 | sylib 221 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)))) |
54 | 53 | ord 861 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (¬ (rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)))) |
55 | 54 | ad2ant2r 746 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → (¬
(rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥)))) |
56 | 45, 55 | mpd 15 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ((rank‘𝑥) = 𝐴 ∨ 𝐴 ∈ (rank‘𝑥))) |
57 | 5, 29, 56 | mpjaod 857 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴))) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴) |
58 | 57 | ex 416 |
. . . . . 6
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → ((𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴)) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
59 | 58 | exlimdv 1934 |
. . . . 5
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → (∃𝑥(𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ (𝑅1‘𝐴)) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
60 | 1, 59 | syl5bi 245 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → (¬ 𝑈 ⊆
(𝑅1‘𝐴) → ∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴)) |
61 | | simpll 766 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ∈ Univ) |
62 | | ne0i 4233 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑈 → 𝑈 ≠ ∅) |
63 | 62, 33 | sylan2 595 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑦 ∈ 𝑈) → 𝐴 ∈ Inacc) |
64 | 63 | ad2ant2r 746 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ Inacc) |
65 | 64, 35, 36 | 3syl 18 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ On) |
66 | | simprl 770 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑦 ∈ 𝑈) |
67 | | fveq2 6658 |
. . . . . . . . . 10
⊢
((rank‘𝑦) =
𝐴 →
(cf‘(rank‘𝑦)) =
(cf‘𝐴)) |
68 | 67 | ad2antll 728 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = (cf‘𝐴)) |
69 | | elina 10147 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧
(cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
70 | 69 | simp2bi 1143 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Inacc →
(cf‘𝐴) = 𝐴) |
71 | 64, 70 | syl 17 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘𝐴) = 𝐴) |
72 | 68, 71 | eqtrd 2793 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = 𝐴) |
73 | | rankcf 10237 |
. . . . . . . . 9
⊢ ¬
𝑦 ≺
(cf‘(rank‘𝑦)) |
74 | | fvex 6671 |
. . . . . . . . . 10
⊢
(cf‘(rank‘𝑦)) ∈ V |
75 | | vex 3413 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
76 | | domtri 10016 |
. . . . . . . . . 10
⊢
(((cf‘(rank‘𝑦)) ∈ V ∧ 𝑦 ∈ V) →
((cf‘(rank‘𝑦))
≼ 𝑦 ↔ ¬
𝑦 ≺
(cf‘(rank‘𝑦)))) |
77 | 74, 75, 76 | mp2an 691 |
. . . . . . . . 9
⊢
((cf‘(rank‘𝑦)) ≼ 𝑦 ↔ ¬ 𝑦 ≺ (cf‘(rank‘𝑦))) |
78 | 73, 77 | mpbir 234 |
. . . . . . . 8
⊢
(cf‘(rank‘𝑦)) ≼ 𝑦 |
79 | 72, 78 | eqbrtrrdi 5072 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ≼ 𝑦) |
80 | | grudomon 10277 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝑦 ∈ 𝑈 ∧ 𝐴 ≼ 𝑦)) → 𝐴 ∈ 𝑈) |
81 | 61, 65, 66, 79, 80 | syl112anc 1371 |
. . . . . 6
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ 𝑈) |
82 | | elin 3874 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On)) |
83 | 82 | biimpri 231 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On)) |
84 | 83, 32 | eleqtrrdi 2863 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝐴 ∈ 𝐴) |
85 | | ordirr 6187 |
. . . . . . . . 9
⊢ (Ord
𝐴 → ¬ 𝐴 ∈ 𝐴) |
86 | 48, 85 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴) |
87 | 86 | adantl 485 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → ¬ 𝐴 ∈ 𝐴) |
88 | 84, 87 | pm2.21dd 198 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝑈 ⊆ (𝑅1‘𝐴)) |
89 | 81, 65, 88 | syl2anc 587 |
. . . . 5
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) ∧ (𝑦 ∈ 𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ⊆ (𝑅1‘𝐴)) |
90 | 89 | rexlimdvaa 3209 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → (∃𝑦 ∈ 𝑈 (rank‘𝑦) = 𝐴 → 𝑈 ⊆ (𝑅1‘𝐴))) |
91 | 60, 90 | syld 47 |
. . 3
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → (¬ 𝑈 ⊆
(𝑅1‘𝐴) → 𝑈 ⊆ (𝑅1‘𝐴))) |
92 | 91 | pm2.18d 127 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → 𝑈 ⊆
(𝑅1‘𝐴)) |
93 | 32 | grur1a 10279 |
. . 3
⊢ (𝑈 ∈ Univ →
(𝑅1‘𝐴) ⊆ 𝑈) |
94 | 93 | adantr 484 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) →
(𝑅1‘𝐴) ⊆ 𝑈) |
95 | 92, 94 | eqssd 3909 |
1
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → 𝑈 =
(𝑅1‘𝐴)) |