MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1 Structured version   Visualization version   GIF version

Theorem grur1 9930
Description: A characterization of Grothendieck universes, part 2. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
grur1 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 = (𝑅1𝐴))

Proof of Theorem grur1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nss 3867 . . . . 5 𝑈 ⊆ (𝑅1𝐴) ↔ ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)))
2 fveqeq2 6420 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((rank‘𝑦) = 𝐴 ↔ (rank‘𝑥) = 𝐴))
32rspcev 3509 . . . . . . . . . 10 ((𝑥𝑈 ∧ (rank‘𝑥) = 𝐴) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴)
43ex 399 . . . . . . . . 9 (𝑥𝑈 → ((rank‘𝑥) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
54ad2antrl 710 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ((rank‘𝑥) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
6 simplr 776 . . . . . . . . . . . 12 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑈 (𝑅1 “ On))
7 simprl 778 . . . . . . . . . . . 12 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑥𝑈)
8 r1elssi 8918 . . . . . . . . . . . . 13 (𝑈 (𝑅1 “ On) → 𝑈 (𝑅1 “ On))
98sseld 3804 . . . . . . . . . . . 12 (𝑈 (𝑅1 “ On) → (𝑥𝑈𝑥 (𝑅1 “ On)))
106, 7, 9sylc 65 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝑥 (𝑅1 “ On))
11 tcrank 8997 . . . . . . . . . . 11 (𝑥 (𝑅1 “ On) → (rank‘𝑥) = (rank “ (TC‘𝑥)))
1210, 11syl 17 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (rank‘𝑥) = (rank “ (TC‘𝑥)))
1312eleq2d 2878 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank‘𝑥) ↔ 𝐴 ∈ (rank “ (TC‘𝑥))))
14 gruelss 9904 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝑥𝑈)
15 grutr 9903 . . . . . . . . . . . . 13 (𝑈 ∈ Univ → Tr 𝑈)
1615adantr 468 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → Tr 𝑈)
17 vex 3401 . . . . . . . . . . . . 13 𝑥 ∈ V
18 tcmin 8867 . . . . . . . . . . . . 13 (𝑥 ∈ V → ((𝑥𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈))
1917, 18ax-mp 5 . . . . . . . . . . . 12 ((𝑥𝑈 ∧ Tr 𝑈) → (TC‘𝑥) ⊆ 𝑈)
2014, 16, 19syl2anc 575 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (TC‘𝑥) ⊆ 𝑈)
21 rankf 8907 . . . . . . . . . . . . 13 rank: (𝑅1 “ On)⟶On
22 ffun 6262 . . . . . . . . . . . . 13 (rank: (𝑅1 “ On)⟶On → Fun rank)
2321, 22ax-mp 5 . . . . . . . . . . . 12 Fun rank
24 fvelima 6472 . . . . . . . . . . . 12 ((Fun rank ∧ 𝐴 ∈ (rank “ (TC‘𝑥))) → ∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴)
2523, 24mpan 673 . . . . . . . . . . 11 (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴)
26 ssrexv 3871 . . . . . . . . . . 11 ((TC‘𝑥) ⊆ 𝑈 → (∃𝑦 ∈ (TC‘𝑥)(rank‘𝑦) = 𝐴 → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2720, 25, 26syl2im 40 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2827ad2ant2r 744 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank “ (TC‘𝑥)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
2913, 28sylbid 231 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝐴 ∈ (rank‘𝑥) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
30 simprr 780 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ¬ 𝑥 ∈ (𝑅1𝐴))
31 ne0i 4129 . . . . . . . . . . . . . . 15 (𝑥𝑈𝑈 ≠ ∅)
32 gruina.1 . . . . . . . . . . . . . . . 16 𝐴 = (𝑈 ∩ On)
3332gruina 9928 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
3431, 33sylan2 582 . . . . . . . . . . . . . 14 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ Inacc)
35 inawina 9800 . . . . . . . . . . . . . 14 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
36 winaon 9798 . . . . . . . . . . . . . 14 (𝐴 ∈ Inaccw𝐴 ∈ On)
3734, 35, 363syl 18 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ On)
38 r1fnon 8880 . . . . . . . . . . . . . 14 𝑅1 Fn On
39 fndm 6204 . . . . . . . . . . . . . 14 (𝑅1 Fn On → dom 𝑅1 = On)
4038, 39ax-mp 5 . . . . . . . . . . . . 13 dom 𝑅1 = On
4137, 40syl6eleqr 2903 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ dom 𝑅1)
4241ad2ant2r 744 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → 𝐴 ∈ dom 𝑅1)
43 rankr1ag 8915 . . . . . . . . . . 11 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
4410, 42, 43syl2anc 575 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
4530, 44mtbid 315 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ¬ (rank‘𝑥) ∈ 𝐴)
46 rankon 8908 . . . . . . . . . . . . 13 (rank‘𝑥) ∈ On
47 eloni 5953 . . . . . . . . . . . . . 14 ((rank‘𝑥) ∈ On → Ord (rank‘𝑥))
48 eloni 5953 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Ord 𝐴)
49 ordtri3or 5975 . . . . . . . . . . . . . 14 ((Ord (rank‘𝑥) ∧ Ord 𝐴) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
5047, 48, 49syl2an 585 . . . . . . . . . . . . 13 (((rank‘𝑥) ∈ On ∧ 𝐴 ∈ On) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
5146, 37, 50sylancr 577 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
52 3orass 1103 . . . . . . . . . . . 12 (((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)) ↔ ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5351, 52sylib 209 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ((rank‘𝑥) ∈ 𝐴 ∨ ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5453ord 882 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (¬ (rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5554ad2ant2r 744 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → (¬ (rank‘𝑥) ∈ 𝐴 → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥))))
5645, 55mpd 15 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ((rank‘𝑥) = 𝐴𝐴 ∈ (rank‘𝑥)))
575, 29, 56mpjaod 878 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴))) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴)
5857ex 399 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → ((𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
5958exlimdv 2024 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ (𝑅1𝐴)) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
601, 59syl5bi 233 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (¬ 𝑈 ⊆ (𝑅1𝐴) → ∃𝑦𝑈 (rank‘𝑦) = 𝐴))
61 simpll 774 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ∈ Univ)
62 ne0i 4129 . . . . . . . . . 10 (𝑦𝑈𝑈 ≠ ∅)
6362, 33sylan2 582 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑦𝑈) → 𝐴 ∈ Inacc)
6463ad2ant2r 744 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ Inacc)
6564, 35, 363syl 18 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴 ∈ On)
66 simprl 778 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑦𝑈)
67 fveq2 6411 . . . . . . . . . 10 ((rank‘𝑦) = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘𝐴))
6867ad2antll 711 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = (cf‘𝐴))
69 elina 9797 . . . . . . . . . . 11 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
7069simp2bi 1169 . . . . . . . . . 10 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
7164, 70syl 17 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘𝐴) = 𝐴)
7268, 71eqtrd 2847 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → (cf‘(rank‘𝑦)) = 𝐴)
73 rankcf 9887 . . . . . . . . 9 ¬ 𝑦 ≺ (cf‘(rank‘𝑦))
74 fvex 6424 . . . . . . . . . 10 (cf‘(rank‘𝑦)) ∈ V
75 vex 3401 . . . . . . . . . 10 𝑦 ∈ V
76 domtri 9666 . . . . . . . . . 10 (((cf‘(rank‘𝑦)) ∈ V ∧ 𝑦 ∈ V) → ((cf‘(rank‘𝑦)) ≼ 𝑦 ↔ ¬ 𝑦 ≺ (cf‘(rank‘𝑦))))
7774, 75, 76mp2an 675 . . . . . . . . 9 ((cf‘(rank‘𝑦)) ≼ 𝑦 ↔ ¬ 𝑦 ≺ (cf‘(rank‘𝑦)))
7873, 77mpbir 222 . . . . . . . 8 (cf‘(rank‘𝑦)) ≼ 𝑦
7972, 78syl6eqbrr 4891 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴𝑦)
80 grudomon 9927 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ (𝑦𝑈𝐴𝑦)) → 𝐴𝑈)
8161, 65, 66, 79, 80syl112anc 1486 . . . . . 6 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝐴𝑈)
82 elin 4002 . . . . . . . . 9 (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴𝑈𝐴 ∈ On))
8382biimpri 219 . . . . . . . 8 ((𝐴𝑈𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On))
8483, 32syl6eleqr 2903 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → 𝐴𝐴)
85 ordirr 5961 . . . . . . . . 9 (Ord 𝐴 → ¬ 𝐴𝐴)
8648, 85syl 17 . . . . . . . 8 (𝐴 ∈ On → ¬ 𝐴𝐴)
8786adantl 469 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → ¬ 𝐴𝐴)
8884, 87pm2.21dd 186 . . . . . 6 ((𝐴𝑈𝐴 ∈ On) → 𝑈 ⊆ (𝑅1𝐴))
8981, 65, 88syl2anc 575 . . . . 5 (((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) ∧ (𝑦𝑈 ∧ (rank‘𝑦) = 𝐴)) → 𝑈 ⊆ (𝑅1𝐴))
9089rexlimdvaa 3227 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (∃𝑦𝑈 (rank‘𝑦) = 𝐴𝑈 ⊆ (𝑅1𝐴)))
9160, 90syld 47 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (¬ 𝑈 ⊆ (𝑅1𝐴) → 𝑈 ⊆ (𝑅1𝐴)))
9291pm2.18d 127 . 2 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 ⊆ (𝑅1𝐴))
9332grur1a 9929 . . 3 (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)
9493adantr 468 . 2 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → (𝑅1𝐴) ⊆ 𝑈)
9592, 94eqssd 3822 1 ((𝑈 ∈ Univ ∧ 𝑈 (𝑅1 “ On)) → 𝑈 = (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3o 1099   = wceq 1637  wex 1859  wcel 2157  wne 2985  wral 3103  wrex 3104  Vcvv 3398  cin 3775  wss 3776  c0 4123  𝒫 cpw 4358   cuni 4637   class class class wbr 4851  Tr wtr 4953  dom cdm 5318  cima 5321  Ord word 5942  Oncon0 5943  Fun wfun 6098   Fn wfn 6099  wf 6100  cfv 6104  cdom 8193  csdm 8194  TCctc 8862  𝑅1cr1 8875  rankcrnk 8876  cfccf 9049  Inaccwcwina 9792  Inacccina 9793  Univcgru 9900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-ac2 9573
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-tc 8863  df-r1 8877  df-rank 8878  df-card 9051  df-cf 9053  df-acn 9054  df-ac 9225  df-wina 9794  df-ina 9795  df-gru 9901
This theorem is referenced by:  grutsk  9932  bj-grur1  33335
  Copyright terms: Public domain W3C validator