Step | Hyp | Ref
| Expression |
1 | | rabn0 4316 |
. . . . . 6
⊢ ({𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ 𝐴 ¬ (𝐹‘𝑎) = 𝑎) |
2 | | rexnal 3165 |
. . . . . 6
⊢
(∃𝑎 ∈
𝐴 ¬ (𝐹‘𝑎) = 𝑎 ↔ ¬ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎) |
3 | 1, 2 | bitri 274 |
. . . . 5
⊢ ({𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅ ↔ ¬ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎) |
4 | | simpl1 1189 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅) → 𝑅 We 𝐴) |
5 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅) → 𝑅 Se 𝐴) |
6 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ⊆ 𝐴 |
7 | 6 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅) → {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ⊆ 𝐴) |
8 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅) → {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅) |
9 | | wereu2 5577 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ ({𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ⊆ 𝐴 ∧ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅)) → ∃!𝑏 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎}∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏) |
10 | 4, 5, 7, 8, 9 | syl22anc 835 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅) → ∃!𝑏 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎}∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏) |
11 | | reurex 3352 |
. . . . . . . 8
⊢
(∃!𝑏 ∈
{𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎}∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∃𝑏 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎}∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏) |
12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅) → ∃𝑏 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎}∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏) |
13 | 12 | ex 412 |
. . . . . 6
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ({𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅ → ∃𝑏 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎}∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)) |
14 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) |
15 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → 𝑎 = 𝑏) |
16 | 14, 15 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → ((𝐹‘𝑎) = 𝑎 ↔ (𝐹‘𝑏) = 𝑏)) |
17 | 16 | notbid 317 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (¬ (𝐹‘𝑎) = 𝑎 ↔ ¬ (𝐹‘𝑏) = 𝑏)) |
18 | 17 | elrab 3617 |
. . . . . . . 8
⊢ (𝑏 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ↔ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) |
19 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → (𝐹‘𝑎) = (𝐹‘𝑐)) |
20 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → 𝑎 = 𝑐) |
21 | 19, 20 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) = 𝑎 ↔ (𝐹‘𝑐) = 𝑐)) |
22 | 21 | notbid 317 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → (¬ (𝐹‘𝑎) = 𝑎 ↔ ¬ (𝐹‘𝑐) = 𝑐)) |
23 | 22 | ralrab 3623 |
. . . . . . . . . . 11
⊢
(∀𝑐 ∈
{𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 ↔ ∀𝑐 ∈ 𝐴 (¬ (𝐹‘𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏)) |
24 | | con34b 315 |
. . . . . . . . . . . . 13
⊢ ((𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) ↔ (¬ (𝐹‘𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏)) |
25 | 24 | bicomi 223 |
. . . . . . . . . . . 12
⊢ ((¬
(𝐹‘𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏) ↔ (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐)) |
26 | 25 | ralbii 3090 |
. . . . . . . . . . 11
⊢
(∀𝑐 ∈
𝐴 (¬ (𝐹‘𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏) ↔ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐)) |
27 | 23, 26 | bitri 274 |
. . . . . . . . . 10
⊢
(∀𝑐 ∈
{𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 ↔ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐)) |
28 | | simpl3 1191 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) |
29 | | isof1o 7174 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → 𝐹:𝐴–1-1-onto→𝐴) |
31 | | f1of 6700 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴⟶𝐴) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → 𝐹:𝐴⟶𝐴) |
33 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → 𝑏 ∈ 𝐴) |
34 | 32, 33 | ffvelrnd 6944 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (𝐹‘𝑏) ∈ 𝐴) |
35 | | breq1 5073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝐹‘𝑏) → (𝑐𝑅𝑏 ↔ (𝐹‘𝑏)𝑅𝑏)) |
36 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = (𝐹‘𝑏) → (𝐹‘𝑐) = (𝐹‘(𝐹‘𝑏))) |
37 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = (𝐹‘𝑏) → 𝑐 = (𝐹‘𝑏)) |
38 | 36, 37 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝐹‘𝑏) → ((𝐹‘𝑐) = 𝑐 ↔ (𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏))) |
39 | 35, 38 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝐹‘𝑏) → ((𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) ↔ ((𝐹‘𝑏)𝑅𝑏 → (𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏)))) |
40 | 39 | rspcv 3547 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑏) ∈ 𝐴 → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → ((𝐹‘𝑏)𝑅𝑏 → (𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏)))) |
41 | 34, 40 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → ((𝐹‘𝑏)𝑅𝑏 → (𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏)))) |
42 | 41 | com23 86 |
. . . . . . . . . . . . 13
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((𝐹‘𝑏)𝑅𝑏 → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → (𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏)))) |
43 | 42 | imp 406 |
. . . . . . . . . . . 12
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘𝑏)𝑅𝑏) → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → (𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏))) |
44 | | f1of1 6699 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴–1-1→𝐴) |
45 | 30, 44 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → 𝐹:𝐴–1-1→𝐴) |
46 | | f1fveq 7116 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴–1-1→𝐴 ∧ ((𝐹‘𝑏) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏) ↔ (𝐹‘𝑏) = 𝑏)) |
47 | 45, 34, 33, 46 | syl12anc 833 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏) ↔ (𝐹‘𝑏) = 𝑏)) |
48 | | pm2.21 123 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝐹‘𝑏) = 𝑏 → ((𝐹‘𝑏) = 𝑏 → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
49 | 48 | ad2antll 725 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((𝐹‘𝑏) = 𝑏 → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
50 | 47, 49 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
51 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘𝑏)𝑅𝑏) → ((𝐹‘(𝐹‘𝑏)) = (𝐹‘𝑏) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
52 | 43, 51 | syld 47 |
. . . . . . . . . . 11
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘𝑏)𝑅𝑏) → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
53 | | f1ocnv 6712 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) |
54 | | f1of 6700 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴⟶𝐴) |
55 | 30, 53, 54 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ◡𝐹:𝐴⟶𝐴) |
56 | 55, 33 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (◡𝐹‘𝑏) ∈ 𝐴) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹‘𝑏)) → (◡𝐹‘𝑏) ∈ 𝐴) |
58 | | isorel 7177 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴) ∧ ((◡𝐹‘𝑏) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((◡𝐹‘𝑏)𝑅𝑏 ↔ (𝐹‘(◡𝐹‘𝑏))𝑅(𝐹‘𝑏))) |
59 | 28, 56, 33, 58 | syl12anc 833 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((◡𝐹‘𝑏)𝑅𝑏 ↔ (𝐹‘(◡𝐹‘𝑏))𝑅(𝐹‘𝑏))) |
60 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑏 ∈ 𝐴) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
61 | 30, 33, 60 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
62 | 61 | breq1d 5080 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((𝐹‘(◡𝐹‘𝑏))𝑅(𝐹‘𝑏) ↔ 𝑏𝑅(𝐹‘𝑏))) |
63 | 59, 62 | bitr2d 279 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (𝑏𝑅(𝐹‘𝑏) ↔ (◡𝐹‘𝑏)𝑅𝑏)) |
64 | 63 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹‘𝑏)) → (◡𝐹‘𝑏)𝑅𝑏) |
65 | | breq1 5073 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (◡𝐹‘𝑏) → (𝑐𝑅𝑏 ↔ (◡𝐹‘𝑏)𝑅𝑏)) |
66 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (◡𝐹‘𝑏) → (𝐹‘𝑐) = (𝐹‘(◡𝐹‘𝑏))) |
67 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (◡𝐹‘𝑏) → 𝑐 = (◡𝐹‘𝑏)) |
68 | 66, 67 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (◡𝐹‘𝑏) → ((𝐹‘𝑐) = 𝑐 ↔ (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏))) |
69 | 65, 68 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (◡𝐹‘𝑏) → ((𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) ↔ ((◡𝐹‘𝑏)𝑅𝑏 → (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)))) |
70 | 69 | rspcv 3547 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐹‘𝑏) ∈ 𝐴 → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → ((◡𝐹‘𝑏)𝑅𝑏 → (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)))) |
71 | 70 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹‘𝑏) ∈ 𝐴 → ((◡𝐹‘𝑏)𝑅𝑏 → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)))) |
72 | 57, 64, 71 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹‘𝑏)) → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏))) |
73 | | simplrr 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)) → ¬ (𝐹‘𝑏) = 𝑏) |
74 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏) → (𝐹‘(𝐹‘(◡𝐹‘𝑏))) = (𝐹‘(◡𝐹‘𝑏))) |
75 | 74 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)) → (𝐹‘(𝐹‘(◡𝐹‘𝑏))) = (𝐹‘(◡𝐹‘𝑏))) |
76 | 61 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (𝐹‘(𝐹‘(◡𝐹‘𝑏))) = (𝐹‘𝑏)) |
77 | 76 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)) → (𝐹‘(𝐹‘(◡𝐹‘𝑏))) = (𝐹‘𝑏)) |
78 | 61 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
79 | 75, 77, 78 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)) → (𝐹‘𝑏) = 𝑏) |
80 | 73, 79, 48 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ (𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏)) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎) |
81 | 80 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
82 | 81 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹‘𝑏)) → ((𝐹‘(◡𝐹‘𝑏)) = (◡𝐹‘𝑏) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
83 | 72, 82 | syld 47 |
. . . . . . . . . . 11
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹‘𝑏)) → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
84 | | simprr 769 |
. . . . . . . . . . . 12
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ¬ (𝐹‘𝑏) = 𝑏) |
85 | | simpl1 1189 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → 𝑅 We 𝐴) |
86 | | weso 5571 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → 𝑅 Or 𝐴) |
88 | | sotrieq 5523 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 Or 𝐴 ∧ ((𝐹‘𝑏) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐹‘𝑏) = 𝑏 ↔ ¬ ((𝐹‘𝑏)𝑅𝑏 ∨ 𝑏𝑅(𝐹‘𝑏)))) |
89 | 87, 34, 33, 88 | syl12anc 833 |
. . . . . . . . . . . . 13
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((𝐹‘𝑏) = 𝑏 ↔ ¬ ((𝐹‘𝑏)𝑅𝑏 ∨ 𝑏𝑅(𝐹‘𝑏)))) |
90 | 89 | con2bid 354 |
. . . . . . . . . . . 12
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (((𝐹‘𝑏)𝑅𝑏 ∨ 𝑏𝑅(𝐹‘𝑏)) ↔ ¬ (𝐹‘𝑏) = 𝑏)) |
91 | 84, 90 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → ((𝐹‘𝑏)𝑅𝑏 ∨ 𝑏𝑅(𝐹‘𝑏))) |
92 | 52, 83, 91 | mpjaodan 955 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝐹‘𝑐) = 𝑐) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
93 | 27, 92 | syl5bi 241 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏)) → (∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
94 | 93 | ex 412 |
. . . . . . . 8
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ((𝑏 ∈ 𝐴 ∧ ¬ (𝐹‘𝑏) = 𝑏) → (∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎))) |
95 | 18, 94 | syl5bi 241 |
. . . . . . 7
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝑏 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} → (∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎))) |
96 | 95 | rexlimdv 3211 |
. . . . . 6
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (∃𝑏 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎}∀𝑐 ∈ {𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
97 | 13, 96 | syld 47 |
. . . . 5
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ({𝑎 ∈ 𝐴 ∣ ¬ (𝐹‘𝑎) = 𝑎} ≠ ∅ → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
98 | 3, 97 | syl5bir 242 |
. . . 4
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (¬ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎 → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎)) |
99 | 98 | pm2.18d 127 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = 𝑎) |
100 | | fvresi 7027 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑎) = 𝑎) |
101 | 100 | eqeq2d 2749 |
. . . . 5
⊢ (𝑎 ∈ 𝐴 → ((𝐹‘𝑎) = (( I ↾ 𝐴)‘𝑎) ↔ (𝐹‘𝑎) = 𝑎)) |
102 | 101 | biimprd 247 |
. . . 4
⊢ (𝑎 ∈ 𝐴 → ((𝐹‘𝑎) = 𝑎 → (𝐹‘𝑎) = (( I ↾ 𝐴)‘𝑎))) |
103 | 102 | ralimia 3084 |
. . 3
⊢
(∀𝑎 ∈
𝐴 (𝐹‘𝑎) = 𝑎 → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = (( I ↾ 𝐴)‘𝑎)) |
104 | 99, 103 | syl 17 |
. 2
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = (( I ↾ 𝐴)‘𝑎)) |
105 | 29 | 3ad2ant3 1133 |
. . . 4
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹:𝐴–1-1-onto→𝐴) |
106 | | f1ofn 6701 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) |
107 | 105, 106 | syl 17 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 Fn 𝐴) |
108 | | fnresi 6545 |
. . . 4
⊢ ( I
↾ 𝐴) Fn 𝐴 |
109 | 108 | a1i 11 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ( I ↾ 𝐴) Fn 𝐴) |
110 | | eqfnfv 6891 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = (( I ↾ 𝐴)‘𝑎))) |
111 | 107, 109,
110 | syl2anc 583 |
. 2
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑎 ∈ 𝐴 (𝐹‘𝑎) = (( I ↾ 𝐴)‘𝑎))) |
112 | 104, 111 | mpbird 256 |
1
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴)) |