MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weniso Structured version   Visualization version   GIF version

Theorem weniso 7225
Description: A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
weniso ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴))

Proof of Theorem weniso
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabn0 4319 . . . . . 6 ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅ ↔ ∃𝑎𝐴 ¬ (𝐹𝑎) = 𝑎)
2 rexnal 3169 . . . . . 6 (∃𝑎𝐴 ¬ (𝐹𝑎) = 𝑎 ↔ ¬ ∀𝑎𝐴 (𝐹𝑎) = 𝑎)
31, 2bitri 274 . . . . 5 ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅ ↔ ¬ ∀𝑎𝐴 (𝐹𝑎) = 𝑎)
4 simpl1 1190 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → 𝑅 We 𝐴)
5 simpl2 1191 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → 𝑅 Se 𝐴)
6 ssrab2 4013 . . . . . . . . . 10 {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ⊆ 𝐴
76a1i 11 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ⊆ 𝐴)
8 simpr 485 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅)
9 wereu2 5586 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ⊆ 𝐴 ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅)) → ∃!𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)
104, 5, 7, 8, 9syl22anc 836 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → ∃!𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)
11 reurex 3362 . . . . . . . 8 (∃!𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∃𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)
1210, 11syl 17 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅) → ∃𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏)
1312ex 413 . . . . . 6 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅ → ∃𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏))
14 fveq2 6774 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
15 id 22 . . . . . . . . . . 11 (𝑎 = 𝑏𝑎 = 𝑏)
1614, 15eqeq12d 2754 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝐹𝑎) = 𝑎 ↔ (𝐹𝑏) = 𝑏))
1716notbid 318 . . . . . . . . 9 (𝑎 = 𝑏 → (¬ (𝐹𝑎) = 𝑎 ↔ ¬ (𝐹𝑏) = 𝑏))
1817elrab 3624 . . . . . . . 8 (𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ↔ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏))
19 fveq2 6774 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
20 id 22 . . . . . . . . . . . . . 14 (𝑎 = 𝑐𝑎 = 𝑐)
2119, 20eqeq12d 2754 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝐹𝑎) = 𝑎 ↔ (𝐹𝑐) = 𝑐))
2221notbid 318 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (¬ (𝐹𝑎) = 𝑎 ↔ ¬ (𝐹𝑐) = 𝑐))
2322ralrab 3630 . . . . . . . . . . 11 (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 ↔ ∀𝑐𝐴 (¬ (𝐹𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏))
24 con34b 316 . . . . . . . . . . . . 13 ((𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) ↔ (¬ (𝐹𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏))
2524bicomi 223 . . . . . . . . . . . 12 ((¬ (𝐹𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏) ↔ (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐))
2625ralbii 3092 . . . . . . . . . . 11 (∀𝑐𝐴 (¬ (𝐹𝑐) = 𝑐 → ¬ 𝑐𝑅𝑏) ↔ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐))
2723, 26bitri 274 . . . . . . . . . 10 (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 ↔ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐))
28 simpl3 1192 . . . . . . . . . . . . . . . . . 18 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴))
29 isof1o 7194 . . . . . . . . . . . . . . . . . 18 (𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴) → 𝐹:𝐴1-1-onto𝐴)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹:𝐴1-1-onto𝐴)
31 f1of 6716 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹:𝐴𝐴)
33 simprl 768 . . . . . . . . . . . . . . . 16 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝑏𝐴)
3432, 33ffvelrnd 6962 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝐹𝑏) ∈ 𝐴)
35 breq1 5077 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑏) → (𝑐𝑅𝑏 ↔ (𝐹𝑏)𝑅𝑏))
36 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑏) → (𝐹𝑐) = (𝐹‘(𝐹𝑏)))
37 id 22 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑏) → 𝑐 = (𝐹𝑏))
3836, 37eqeq12d 2754 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑏) → ((𝐹𝑐) = 𝑐 ↔ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)))
3935, 38imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑏) → ((𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) ↔ ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
4039rspcv 3557 . . . . . . . . . . . . . . 15 ((𝐹𝑏) ∈ 𝐴 → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
4134, 40syl 17 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
4241com23 86 . . . . . . . . . . . . 13 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏)𝑅𝑏 → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
4342imp 407 . . . . . . . . . . . 12 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹𝑏)𝑅𝑏) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → (𝐹‘(𝐹𝑏)) = (𝐹𝑏)))
44 f1of1 6715 . . . . . . . . . . . . . . . 16 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1𝐴)
4530, 44syl 17 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹:𝐴1-1𝐴)
46 f1fveq 7135 . . . . . . . . . . . . . . 15 ((𝐹:𝐴1-1𝐴 ∧ ((𝐹𝑏) ∈ 𝐴𝑏𝐴)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) ↔ (𝐹𝑏) = 𝑏))
4745, 34, 33, 46syl12anc 834 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) ↔ (𝐹𝑏) = 𝑏))
48 pm2.21 123 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑏) = 𝑏 → ((𝐹𝑏) = 𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
4948ad2antll 726 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏) = 𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
5047, 49sylbid 239 . . . . . . . . . . . . 13 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
5150adantr 481 . . . . . . . . . . . 12 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹𝑏)𝑅𝑏) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
5243, 51syld 47 . . . . . . . . . . 11 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹𝑏)𝑅𝑏) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
53 f1ocnv 6728 . . . . . . . . . . . . . . . 16 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1-onto𝐴)
54 f1of 6716 . . . . . . . . . . . . . . . 16 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
5530, 53, 543syl 18 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝐹:𝐴𝐴)
5655, 33ffvelrnd 6962 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝐹𝑏) ∈ 𝐴)
5756adantr 481 . . . . . . . . . . . . 13 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → (𝐹𝑏) ∈ 𝐴)
58 isorel 7197 . . . . . . . . . . . . . . . 16 ((𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴) ∧ ((𝐹𝑏) ∈ 𝐴𝑏𝐴)) → ((𝐹𝑏)𝑅𝑏 ↔ (𝐹‘(𝐹𝑏))𝑅(𝐹𝑏)))
5928, 56, 33, 58syl12anc 834 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏)𝑅𝑏 ↔ (𝐹‘(𝐹𝑏))𝑅(𝐹𝑏)))
60 f1ocnvfv2 7149 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴1-1-onto𝐴𝑏𝐴) → (𝐹‘(𝐹𝑏)) = 𝑏)
6130, 33, 60syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝐹‘(𝐹𝑏)) = 𝑏)
6261breq1d 5084 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹‘(𝐹𝑏))𝑅(𝐹𝑏) ↔ 𝑏𝑅(𝐹𝑏)))
6359, 62bitr2d 279 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝑏𝑅(𝐹𝑏) ↔ (𝐹𝑏)𝑅𝑏))
6463biimpa 477 . . . . . . . . . . . . 13 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → (𝐹𝑏)𝑅𝑏)
65 breq1 5077 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑏) → (𝑐𝑅𝑏 ↔ (𝐹𝑏)𝑅𝑏))
66 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑏) → (𝐹𝑐) = (𝐹‘(𝐹𝑏)))
67 id 22 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑏) → 𝑐 = (𝐹𝑏))
6866, 67eqeq12d 2754 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑏) → ((𝐹𝑐) = 𝑐 ↔ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)))
6965, 68imbi12d 345 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑏) → ((𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) ↔ ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
7069rspcv 3557 . . . . . . . . . . . . . 14 ((𝐹𝑏) ∈ 𝐴 → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ((𝐹𝑏)𝑅𝑏 → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
7170com23 86 . . . . . . . . . . . . 13 ((𝐹𝑏) ∈ 𝐴 → ((𝐹𝑏)𝑅𝑏 → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → (𝐹‘(𝐹𝑏)) = (𝐹𝑏))))
7257, 64, 71sylc 65 . . . . . . . . . . . 12 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → (𝐹‘(𝐹𝑏)) = (𝐹𝑏)))
73 simplrr 775 . . . . . . . . . . . . . . 15 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → ¬ (𝐹𝑏) = 𝑏)
74 fveq2 6774 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → (𝐹‘(𝐹‘(𝐹𝑏))) = (𝐹‘(𝐹𝑏)))
7574adantl 482 . . . . . . . . . . . . . . . 16 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → (𝐹‘(𝐹‘(𝐹𝑏))) = (𝐹‘(𝐹𝑏)))
7661fveq2d 6778 . . . . . . . . . . . . . . . . 17 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (𝐹‘(𝐹‘(𝐹𝑏))) = (𝐹𝑏))
7776adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → (𝐹‘(𝐹‘(𝐹𝑏))) = (𝐹𝑏))
7861adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → (𝐹‘(𝐹𝑏)) = 𝑏)
7975, 77, 783eqtr3d 2786 . . . . . . . . . . . . . . 15 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → (𝐹𝑏) = 𝑏)
8073, 79, 48sylc 65 . . . . . . . . . . . . . 14 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ (𝐹‘(𝐹𝑏)) = (𝐹𝑏)) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎)
8180ex 413 . . . . . . . . . . . . 13 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
8281adantr 481 . . . . . . . . . . . 12 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → ((𝐹‘(𝐹𝑏)) = (𝐹𝑏) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
8372, 82syld 47 . . . . . . . . . . 11 ((((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) ∧ 𝑏𝑅(𝐹𝑏)) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
84 simprr 770 . . . . . . . . . . . 12 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ¬ (𝐹𝑏) = 𝑏)
85 simpl1 1190 . . . . . . . . . . . . . . 15 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝑅 We 𝐴)
86 weso 5580 . . . . . . . . . . . . . . 15 (𝑅 We 𝐴𝑅 Or 𝐴)
8785, 86syl 17 . . . . . . . . . . . . . 14 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → 𝑅 Or 𝐴)
88 sotrieq 5532 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴 ∧ ((𝐹𝑏) ∈ 𝐴𝑏𝐴)) → ((𝐹𝑏) = 𝑏 ↔ ¬ ((𝐹𝑏)𝑅𝑏𝑏𝑅(𝐹𝑏))))
8987, 34, 33, 88syl12anc 834 . . . . . . . . . . . . 13 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏) = 𝑏 ↔ ¬ ((𝐹𝑏)𝑅𝑏𝑏𝑅(𝐹𝑏))))
9089con2bid 355 . . . . . . . . . . . 12 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (((𝐹𝑏)𝑅𝑏𝑏𝑅(𝐹𝑏)) ↔ ¬ (𝐹𝑏) = 𝑏))
9184, 90mpbird 256 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → ((𝐹𝑏)𝑅𝑏𝑏𝑅(𝐹𝑏)))
9252, 83, 91mpjaodan 956 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (∀𝑐𝐴 (𝑐𝑅𝑏 → (𝐹𝑐) = 𝑐) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
9327, 92syl5bi 241 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) ∧ (𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏)) → (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
9493ex 413 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ((𝑏𝐴 ∧ ¬ (𝐹𝑏) = 𝑏) → (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎)))
9518, 94syl5bi 241 . . . . . . 7 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} → (∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎)))
9695rexlimdv 3212 . . . . . 6 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (∃𝑏 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎}∀𝑐 ∈ {𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ¬ 𝑐𝑅𝑏 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
9713, 96syld 47 . . . . 5 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ({𝑎𝐴 ∣ ¬ (𝐹𝑎) = 𝑎} ≠ ∅ → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
983, 97syl5bir 242 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (¬ ∀𝑎𝐴 (𝐹𝑎) = 𝑎 → ∀𝑎𝐴 (𝐹𝑎) = 𝑎))
9998pm2.18d 127 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ∀𝑎𝐴 (𝐹𝑎) = 𝑎)
100 fvresi 7045 . . . . . 6 (𝑎𝐴 → (( I ↾ 𝐴)‘𝑎) = 𝑎)
101100eqeq2d 2749 . . . . 5 (𝑎𝐴 → ((𝐹𝑎) = (( I ↾ 𝐴)‘𝑎) ↔ (𝐹𝑎) = 𝑎))
102101biimprd 247 . . . 4 (𝑎𝐴 → ((𝐹𝑎) = 𝑎 → (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎)))
103102ralimia 3085 . . 3 (∀𝑎𝐴 (𝐹𝑎) = 𝑎 → ∀𝑎𝐴 (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎))
10499, 103syl 17 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ∀𝑎𝐴 (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎))
105293ad2ant3 1134 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹:𝐴1-1-onto𝐴)
106 f1ofn 6717 . . . 4 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
107105, 106syl 17 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 Fn 𝐴)
108 fnresi 6561 . . . 4 ( I ↾ 𝐴) Fn 𝐴
109108a1i 11 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → ( I ↾ 𝐴) Fn 𝐴)
110 eqfnfv 6909 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑎𝐴 (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎)))
111107, 109, 110syl2anc 584 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → (𝐹 = ( I ↾ 𝐴) ↔ ∀𝑎𝐴 (𝐹𝑎) = (( I ↾ 𝐴)‘𝑎)))
112104, 111mpbird 256 1 ((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  ∃!wreu 3066  {crab 3068  wss 3887  c0 4256   class class class wbr 5074   I cid 5488   Or wor 5502   Se wse 5542   We wwe 5543  ccnv 5588  cres 5591   Fn wfn 6428  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442
This theorem is referenced by:  weisoeq  7226  oiid  9300
  Copyright terms: Public domain W3C validator