MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolunnul Structured version   Visualization version   GIF version

Theorem ovolunnul 23794
Description: Adding a nullset does not change the measure of a set. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ovolunnul ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴𝐵)) = (vol*‘𝐴))

Proof of Theorem ovolunnul
StepHypRef Expression
1 simp1 1116 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → 𝐴 ⊆ ℝ)
2 simp2 1117 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → 𝐵 ⊆ ℝ)
31, 2unssd 4046 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (𝐴𝐵) ⊆ ℝ)
4 ovolcl 23772 . . 3 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
53, 4syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
6 ovolcl 23772 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
763ad2ant1 1113 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘𝐴) ∈ ℝ*)
8 xrltnle 10500 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ∈ ℝ*) → ((vol*‘𝐴) < (vol*‘(𝐴𝐵)) ↔ ¬ (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴)))
97, 5, 8syl2anc 576 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → ((vol*‘𝐴) < (vol*‘(𝐴𝐵)) ↔ ¬ (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴)))
101adantr 473 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → 𝐴 ⊆ ℝ)
11 mnfxr 10490 . . . . . . . . 9 -∞ ∈ ℝ*
1211a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → -∞ ∈ ℝ*)
1310, 6syl 17 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐴) ∈ ℝ*)
145adantr 473 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
15 ovolge0 23775 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴))
16153ad2ant1 1113 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → 0 ≤ (vol*‘𝐴))
17 ge0gtmnf 12375 . . . . . . . . . 10 (((vol*‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol*‘𝐴)) → -∞ < (vol*‘𝐴))
187, 16, 17syl2anc 576 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → -∞ < (vol*‘𝐴))
1918adantr 473 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → -∞ < (vol*‘𝐴))
20 simpr 477 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐴) < (vol*‘(𝐴𝐵)))
21 xrre2 12373 . . . . . . . 8 (((-∞ ∈ ℝ* ∧ (vol*‘𝐴) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ∈ ℝ*) ∧ (-∞ < (vol*‘𝐴) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵)))) → (vol*‘𝐴) ∈ ℝ)
2212, 13, 14, 19, 20, 21syl32anc 1358 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐴) ∈ ℝ)
232adantr 473 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → 𝐵 ⊆ ℝ)
24 simpl3 1173 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐵) = 0)
25 0re 10433 . . . . . . . 8 0 ∈ ℝ
2624, 25syl6eqel 2868 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐵) ∈ ℝ)
27 ovolun 23793 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
2810, 22, 23, 26, 27syl22anc 826 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
2924oveq2d 6986 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → ((vol*‘𝐴) + (vol*‘𝐵)) = ((vol*‘𝐴) + 0))
3022recnd 10460 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐴) ∈ ℂ)
3130addid1d 10632 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → ((vol*‘𝐴) + 0) = (vol*‘𝐴))
3229, 31eqtrd 2808 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → ((vol*‘𝐴) + (vol*‘𝐵)) = (vol*‘𝐴))
3328, 32breqtrd 4949 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴))
3433ex 405 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → ((vol*‘𝐴) < (vol*‘(𝐴𝐵)) → (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴)))
359, 34sylbird 252 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (¬ (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴) → (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴)))
3635pm2.18d 127 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴))
37 ssun1 4033 . . 3 𝐴 ⊆ (𝐴𝐵)
38 ovolss 23779 . . 3 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘(𝐴𝐵)))
3937, 3, 38sylancr 578 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘𝐴) ≤ (vol*‘(𝐴𝐵)))
405, 7, 36, 39xrletrid 12358 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴𝐵)) = (vol*‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  cun 3823  wss 3825   class class class wbr 4923  cfv 6182  (class class class)co 6970  cr 10326  0cc0 10327   + caddc 10330  -∞cmnf 10464  *cxr 10465   < clt 10466  cle 10467  vol*covol 23756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-ioo 12551  df-ico 12553  df-fz 12702  df-fl 12970  df-seq 13178  df-exp 13238  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-ovol 23758
This theorem is referenced by:  mblfinlem2  34319
  Copyright terms: Public domain W3C validator