MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolunnul Structured version   Visualization version   GIF version

Theorem ovolunnul 25377
Description: Adding a nullset does not change the measure of a set. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ovolunnul ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴𝐵)) = (vol*‘𝐴))

Proof of Theorem ovolunnul
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → 𝐴 ⊆ ℝ)
2 simp2 1137 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → 𝐵 ⊆ ℝ)
31, 2unssd 4151 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (𝐴𝐵) ⊆ ℝ)
4 ovolcl 25355 . . 3 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
53, 4syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
6 ovolcl 25355 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
763ad2ant1 1133 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘𝐴) ∈ ℝ*)
8 xrltnle 11217 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ∈ ℝ*) → ((vol*‘𝐴) < (vol*‘(𝐴𝐵)) ↔ ¬ (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴)))
97, 5, 8syl2anc 584 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → ((vol*‘𝐴) < (vol*‘(𝐴𝐵)) ↔ ¬ (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴)))
101adantr 480 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → 𝐴 ⊆ ℝ)
11 mnfxr 11207 . . . . . . . . 9 -∞ ∈ ℝ*
1211a1i 11 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → -∞ ∈ ℝ*)
1310, 6syl 17 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐴) ∈ ℝ*)
145adantr 480 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
15 ovolge0 25358 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴))
16153ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → 0 ≤ (vol*‘𝐴))
17 ge0gtmnf 13108 . . . . . . . . . 10 (((vol*‘𝐴) ∈ ℝ* ∧ 0 ≤ (vol*‘𝐴)) → -∞ < (vol*‘𝐴))
187, 16, 17syl2anc 584 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → -∞ < (vol*‘𝐴))
1918adantr 480 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → -∞ < (vol*‘𝐴))
20 simpr 484 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐴) < (vol*‘(𝐴𝐵)))
21 xrre2 13106 . . . . . . . 8 (((-∞ ∈ ℝ* ∧ (vol*‘𝐴) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ∈ ℝ*) ∧ (-∞ < (vol*‘𝐴) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵)))) → (vol*‘𝐴) ∈ ℝ)
2212, 13, 14, 19, 20, 21syl32anc 1380 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐴) ∈ ℝ)
232adantr 480 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → 𝐵 ⊆ ℝ)
24 simpl3 1194 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐵) = 0)
25 0re 11152 . . . . . . . 8 0 ∈ ℝ
2624, 25eqeltrdi 2836 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐵) ∈ ℝ)
27 ovolun 25376 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
2810, 22, 23, 26, 27syl22anc 838 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
2924oveq2d 7385 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → ((vol*‘𝐴) + (vol*‘𝐵)) = ((vol*‘𝐴) + 0))
3022recnd 11178 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘𝐴) ∈ ℂ)
3130addridd 11350 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → ((vol*‘𝐴) + 0) = (vol*‘𝐴))
3229, 31eqtrd 2764 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → ((vol*‘𝐴) + (vol*‘𝐵)) = (vol*‘𝐴))
3328, 32breqtrd 5128 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) ∧ (vol*‘𝐴) < (vol*‘(𝐴𝐵))) → (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴))
3433ex 412 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → ((vol*‘𝐴) < (vol*‘(𝐴𝐵)) → (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴)))
359, 34sylbird 260 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (¬ (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴) → (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴)))
3635pm2.18d 127 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴𝐵)) ≤ (vol*‘𝐴))
37 ssun1 4137 . . 3 𝐴 ⊆ (𝐴𝐵)
38 ovolss 25362 . . 3 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘(𝐴𝐵)))
3937, 3, 38sylancr 587 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘𝐴) ≤ (vol*‘(𝐴𝐵)))
405, 7, 36, 39xrletrid 13091 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴𝐵)) = (vol*‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3909  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044   + caddc 11047  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  vol*covol 25339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ioo 13286  df-ico 13288  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-ovol 25341
This theorem is referenced by:  mblfinlem2  37625
  Copyright terms: Public domain W3C validator