Proof of Theorem ovolunnul
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
𝐴 ⊆
ℝ) |
2 | | simp2 1135 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
𝐵 ⊆
ℝ) |
3 | 1, 2 | unssd 4116 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
(𝐴 ∪ 𝐵) ⊆ ℝ) |
4 | | ovolcl 24547 |
. . 3
⊢ ((𝐴 ∪ 𝐵) ⊆ ℝ → (vol*‘(𝐴 ∪ 𝐵)) ∈
ℝ*) |
5 | 3, 4 | syl 17 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
(vol*‘(𝐴 ∪ 𝐵)) ∈
ℝ*) |
6 | | ovolcl 24547 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) ∈
ℝ*) |
7 | 6 | 3ad2ant1 1131 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
(vol*‘𝐴) ∈
ℝ*) |
8 | | xrltnle 10973 |
. . . . 5
⊢
(((vol*‘𝐴)
∈ ℝ* ∧ (vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ*) →
((vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵)) ↔ ¬
(vol*‘(𝐴 ∪ 𝐵)) ≤ (vol*‘𝐴))) |
9 | 7, 5, 8 | syl2anc 583 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
((vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵)) ↔ ¬
(vol*‘(𝐴 ∪ 𝐵)) ≤ (vol*‘𝐴))) |
10 | 1 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → 𝐴 ⊆ ℝ) |
11 | | mnfxr 10963 |
. . . . . . . . 9
⊢ -∞
∈ ℝ* |
12 | 11 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → -∞ ∈
ℝ*) |
13 | 10, 6 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘𝐴) ∈
ℝ*) |
14 | 5 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘(𝐴 ∪ 𝐵)) ∈
ℝ*) |
15 | | ovolge0 24550 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ ℝ → 0 ≤
(vol*‘𝐴)) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
0 ≤ (vol*‘𝐴)) |
17 | | ge0gtmnf 12835 |
. . . . . . . . . 10
⊢
(((vol*‘𝐴)
∈ ℝ* ∧ 0 ≤ (vol*‘𝐴)) → -∞ < (vol*‘𝐴)) |
18 | 7, 16, 17 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
-∞ < (vol*‘𝐴)) |
19 | 18 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → -∞ <
(vol*‘𝐴)) |
20 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘𝐴) < (vol*‘(𝐴 ∪ 𝐵))) |
21 | | xrre2 12833 |
. . . . . . . 8
⊢
(((-∞ ∈ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*
∧ (vol*‘(𝐴 ∪
𝐵)) ∈
ℝ*) ∧ (-∞ < (vol*‘𝐴) ∧ (vol*‘𝐴) < (vol*‘(𝐴 ∪ 𝐵)))) → (vol*‘𝐴) ∈ ℝ) |
22 | 12, 13, 14, 19, 20, 21 | syl32anc 1376 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘𝐴) ∈
ℝ) |
23 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → 𝐵 ⊆ ℝ) |
24 | | simpl3 1191 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘𝐵) = 0) |
25 | | 0re 10908 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
26 | 24, 25 | eqeltrdi 2847 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘𝐵) ∈
ℝ) |
27 | | ovolun 24568 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (𝐵 ⊆
ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) |
28 | 10, 22, 23, 26, 27 | syl22anc 835 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) |
29 | 24 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → ((vol*‘𝐴) + (vol*‘𝐵)) = ((vol*‘𝐴) + 0)) |
30 | 22 | recnd 10934 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘𝐴) ∈
ℂ) |
31 | 30 | addid1d 11105 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → ((vol*‘𝐴) + 0) = (vol*‘𝐴)) |
32 | 29, 31 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → ((vol*‘𝐴) + (vol*‘𝐵)) = (vol*‘𝐴)) |
33 | 28, 32 | breqtrd 5096 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) ∧
(vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵))) → (vol*‘(𝐴 ∪ 𝐵)) ≤ (vol*‘𝐴)) |
34 | 33 | ex 412 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
((vol*‘𝐴) <
(vol*‘(𝐴 ∪ 𝐵)) → (vol*‘(𝐴 ∪ 𝐵)) ≤ (vol*‘𝐴))) |
35 | 9, 34 | sylbird 259 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
(¬ (vol*‘(𝐴 ∪
𝐵)) ≤ (vol*‘𝐴) → (vol*‘(𝐴 ∪ 𝐵)) ≤ (vol*‘𝐴))) |
36 | 35 | pm2.18d 127 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
(vol*‘(𝐴 ∪ 𝐵)) ≤ (vol*‘𝐴)) |
37 | | ssun1 4102 |
. . 3
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
38 | | ovolss 24554 |
. . 3
⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘(𝐴 ∪ 𝐵))) |
39 | 37, 3, 38 | sylancr 586 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
(vol*‘𝐴) ≤
(vol*‘(𝐴 ∪ 𝐵))) |
40 | 5, 7, 36, 39 | xrletrid 12818 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧
(vol*‘𝐵) = 0) →
(vol*‘(𝐴 ∪ 𝐵)) = (vol*‘𝐴)) |