Step | Hyp | Ref
| Expression |
1 | | epweon 7625 |
. . . . . 6
⊢ E We
On |
2 | | wess 5576 |
. . . . . 6
⊢ (𝐴 ⊆ On → ( E We On
→ E We 𝐴)) |
3 | 1, 2 | mpi 20 |
. . . . 5
⊢ (𝐴 ⊆ On → E We 𝐴) |
4 | | epse 5572 |
. . . . 5
⊢ E Se
𝐴 |
5 | | oismo.1 |
. . . . . 6
⊢ 𝐹 = OrdIso( E , 𝐴) |
6 | 5 | oiiso2 9290 |
. . . . 5
⊢ (( E We
𝐴 ∧ E Se 𝐴) → 𝐹 Isom E , E (dom 𝐹, ran 𝐹)) |
7 | 3, 4, 6 | sylancl 586 |
. . . 4
⊢ (𝐴 ⊆ On → 𝐹 Isom E , E (dom 𝐹, ran 𝐹)) |
8 | 5 | oicl 9288 |
. . . . 5
⊢ Ord dom
𝐹 |
9 | 5 | oif 9289 |
. . . . . . 7
⊢ 𝐹:dom 𝐹⟶𝐴 |
10 | | frn 6607 |
. . . . . . 7
⊢ (𝐹:dom 𝐹⟶𝐴 → ran 𝐹 ⊆ 𝐴) |
11 | 9, 10 | ax-mp 5 |
. . . . . 6
⊢ ran 𝐹 ⊆ 𝐴 |
12 | | id 22 |
. . . . . 6
⊢ (𝐴 ⊆ On → 𝐴 ⊆ On) |
13 | 11, 12 | sstrid 3932 |
. . . . 5
⊢ (𝐴 ⊆ On → ran 𝐹 ⊆ On) |
14 | | smoiso2 8200 |
. . . . 5
⊢ ((Ord dom
𝐹 ∧ ran 𝐹 ⊆ On) → ((𝐹:dom 𝐹–onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹))) |
15 | 8, 13, 14 | sylancr 587 |
. . . 4
⊢ (𝐴 ⊆ On → ((𝐹:dom 𝐹–onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹))) |
16 | 7, 15 | mpbird 256 |
. . 3
⊢ (𝐴 ⊆ On → (𝐹:dom 𝐹–onto→ran 𝐹 ∧ Smo 𝐹)) |
17 | 16 | simprd 496 |
. 2
⊢ (𝐴 ⊆ On → Smo 𝐹) |
18 | 11 | a1i 11 |
. . 3
⊢ (𝐴 ⊆ On → ran 𝐹 ⊆ 𝐴) |
19 | | simprl 768 |
. . . . . 6
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥 ∈ 𝐴) |
20 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E We 𝐴) |
21 | 4 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E Se 𝐴) |
22 | | ffn 6600 |
. . . . . . . . . . 11
⊢ (𝐹:dom 𝐹⟶𝐴 → 𝐹 Fn dom 𝐹) |
23 | 9, 22 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Fn dom 𝐹) |
24 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝐹) |
25 | 3 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E We 𝐴) |
26 | 4 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E Se 𝐴) |
27 | | simplrl 774 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ 𝐴) |
28 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹) |
29 | 5 | oiiniseg 9292 |
. . . . . . . . . . . . . . 15
⊢ ((( E We
𝐴 ∧ E Se 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝐹)) → ((𝐹‘𝑦) E 𝑥 ∨ 𝑥 ∈ ran 𝐹)) |
30 | 25, 26, 27, 28, 29 | syl22anc 836 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) E 𝑥 ∨ 𝑥 ∈ ran 𝐹)) |
31 | 30 | ord 861 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (¬ (𝐹‘𝑦) E 𝑥 → 𝑥 ∈ ran 𝐹)) |
32 | 24, 31 | mt3d 148 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) E 𝑥) |
33 | | epel 5498 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑦) E 𝑥 ↔ (𝐹‘𝑦) ∈ 𝑥) |
34 | 32, 33 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) ∈ 𝑥) |
35 | 34 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ∀𝑦 ∈ dom 𝐹(𝐹‘𝑦) ∈ 𝑥) |
36 | | ffnfv 6992 |
. . . . . . . . . 10
⊢ (𝐹:dom 𝐹⟶𝑥 ↔ (𝐹 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝐹‘𝑦) ∈ 𝑥)) |
37 | 23, 35, 36 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹:dom 𝐹⟶𝑥) |
38 | 9, 22 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐹 Fn dom 𝐹) |
39 | 17 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → Smo 𝐹) |
40 | | smogt 8198 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn dom 𝐹 ∧ Smo 𝐹 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹‘𝑦)) |
41 | 38, 39, 28, 40 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹‘𝑦)) |
42 | | ordelon 6290 |
. . . . . . . . . . . . . . 15
⊢ ((Ord dom
𝐹 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ On) |
43 | 8, 28, 42 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ On) |
44 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ⊆ On) |
45 | 44, 27 | sseldd 3922 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ On) |
46 | | ontr2 6313 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ⊆ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ∈ 𝑥) → 𝑦 ∈ 𝑥)) |
47 | 43, 45, 46 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝑦 ⊆ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ∈ 𝑥) → 𝑦 ∈ 𝑥)) |
48 | 41, 34, 47 | mp2and 696 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ 𝑥) |
49 | 48 | ex 413 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → (𝑦 ∈ dom 𝐹 → 𝑦 ∈ 𝑥)) |
50 | 49 | ssrdv 3927 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹 ⊆ 𝑥) |
51 | 19, 50 | ssexd 5248 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹 ∈ V) |
52 | | fex2 7780 |
. . . . . . . . 9
⊢ ((𝐹:dom 𝐹⟶𝑥 ∧ dom 𝐹 ∈ V ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ V) |
53 | 37, 51, 19, 52 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 ∈ V) |
54 | 5 | ordtype2 9293 |
. . . . . . . 8
⊢ (( E We
𝐴 ∧ E Se 𝐴 ∧ 𝐹 ∈ V) → 𝐹 Isom E , E (dom 𝐹, 𝐴)) |
55 | 20, 21, 53, 54 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Isom E , E (dom 𝐹, 𝐴)) |
56 | | isof1o 7194 |
. . . . . . 7
⊢ (𝐹 Isom E , E (dom 𝐹, 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) |
57 | | f1ofo 6723 |
. . . . . . 7
⊢ (𝐹:dom 𝐹–1-1-onto→𝐴 → 𝐹:dom 𝐹–onto→𝐴) |
58 | | forn 6691 |
. . . . . . 7
⊢ (𝐹:dom 𝐹–onto→𝐴 → ran 𝐹 = 𝐴) |
59 | 55, 56, 57, 58 | 4syl 19 |
. . . . . 6
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ran 𝐹 = 𝐴) |
60 | 19, 59 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥 ∈ ran 𝐹) |
61 | 60 | expr 457 |
. . . 4
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ ran 𝐹 → 𝑥 ∈ ran 𝐹)) |
62 | 61 | pm2.18d 127 |
. . 3
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ran 𝐹) |
63 | 18, 62 | eqelssd 3942 |
. 2
⊢ (𝐴 ⊆ On → ran 𝐹 = 𝐴) |
64 | 17, 63 | jca 512 |
1
⊢ (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴)) |