MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oismo Structured version   Visualization version   GIF version

Theorem oismo 9299
Description: When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 5209 (the second statement is trivial under ax-rep 5209). (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
oismo.1 𝐹 = OrdIso( E , 𝐴)
Assertion
Ref Expression
oismo (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴))

Proof of Theorem oismo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 7625 . . . . . 6 E We On
2 wess 5576 . . . . . 6 (𝐴 ⊆ On → ( E We On → E We 𝐴))
31, 2mpi 20 . . . . 5 (𝐴 ⊆ On → E We 𝐴)
4 epse 5572 . . . . 5 E Se 𝐴
5 oismo.1 . . . . . 6 𝐹 = OrdIso( E , 𝐴)
65oiiso2 9290 . . . . 5 (( E We 𝐴 ∧ E Se 𝐴) → 𝐹 Isom E , E (dom 𝐹, ran 𝐹))
73, 4, 6sylancl 586 . . . 4 (𝐴 ⊆ On → 𝐹 Isom E , E (dom 𝐹, ran 𝐹))
85oicl 9288 . . . . 5 Ord dom 𝐹
95oif 9289 . . . . . . 7 𝐹:dom 𝐹𝐴
10 frn 6607 . . . . . . 7 (𝐹:dom 𝐹𝐴 → ran 𝐹𝐴)
119, 10ax-mp 5 . . . . . 6 ran 𝐹𝐴
12 id 22 . . . . . 6 (𝐴 ⊆ On → 𝐴 ⊆ On)
1311, 12sstrid 3932 . . . . 5 (𝐴 ⊆ On → ran 𝐹 ⊆ On)
14 smoiso2 8200 . . . . 5 ((Ord dom 𝐹 ∧ ran 𝐹 ⊆ On) → ((𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹)))
158, 13, 14sylancr 587 . . . 4 (𝐴 ⊆ On → ((𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹)))
167, 15mpbird 256 . . 3 (𝐴 ⊆ On → (𝐹:dom 𝐹onto→ran 𝐹 ∧ Smo 𝐹))
1716simprd 496 . 2 (𝐴 ⊆ On → Smo 𝐹)
1811a1i 11 . . 3 (𝐴 ⊆ On → ran 𝐹𝐴)
19 simprl 768 . . . . . 6 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥𝐴)
203adantr 481 . . . . . . . 8 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E We 𝐴)
214a1i 11 . . . . . . . 8 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E Se 𝐴)
22 ffn 6600 . . . . . . . . . . 11 (𝐹:dom 𝐹𝐴𝐹 Fn dom 𝐹)
239, 22mp1i 13 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Fn dom 𝐹)
24 simplrr 775 . . . . . . . . . . . . 13 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝐹)
253ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E We 𝐴)
264a1i 11 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E Se 𝐴)
27 simplrl 774 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥𝐴)
28 simpr 485 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)
295oiiniseg 9292 . . . . . . . . . . . . . . 15 ((( E We 𝐴 ∧ E Se 𝐴) ∧ (𝑥𝐴𝑦 ∈ dom 𝐹)) → ((𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3025, 26, 27, 28, 29syl22anc 836 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3130ord 861 . . . . . . . . . . . . 13 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (¬ (𝐹𝑦) E 𝑥𝑥 ∈ ran 𝐹))
3224, 31mt3d 148 . . . . . . . . . . . 12 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) E 𝑥)
33 epel 5498 . . . . . . . . . . . 12 ((𝐹𝑦) E 𝑥 ↔ (𝐹𝑦) ∈ 𝑥)
3432, 33sylib 217 . . . . . . . . . . 11 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ 𝑥)
3534ralrimiva 3103 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ∀𝑦 ∈ dom 𝐹(𝐹𝑦) ∈ 𝑥)
36 ffnfv 6992 . . . . . . . . . 10 (𝐹:dom 𝐹𝑥 ↔ (𝐹 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝐹𝑦) ∈ 𝑥))
3723, 35, 36sylanbrc 583 . . . . . . . . 9 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹:dom 𝐹𝑥)
389, 22mp1i 13 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐹 Fn dom 𝐹)
3917ad2antrr 723 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → Smo 𝐹)
40 smogt 8198 . . . . . . . . . . . . . 14 ((𝐹 Fn dom 𝐹 ∧ Smo 𝐹𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹𝑦))
4138, 39, 28, 40syl3anc 1370 . . . . . . . . . . . . 13 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹𝑦))
42 ordelon 6290 . . . . . . . . . . . . . . 15 ((Ord dom 𝐹𝑦 ∈ dom 𝐹) → 𝑦 ∈ On)
438, 28, 42sylancr 587 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ On)
44 simpll 764 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ⊆ On)
4544, 27sseldd 3922 . . . . . . . . . . . . . 14 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ On)
46 ontr2 6313 . . . . . . . . . . . . . 14 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦𝑥))
4743, 45, 46syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦𝑥))
4841, 34, 47mp2and 696 . . . . . . . . . . . 12 (((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦𝑥)
4948ex 413 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → (𝑦 ∈ dom 𝐹𝑦𝑥))
5049ssrdv 3927 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹𝑥)
5119, 50ssexd 5248 . . . . . . . . 9 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹 ∈ V)
52 fex2 7780 . . . . . . . . 9 ((𝐹:dom 𝐹𝑥 ∧ dom 𝐹 ∈ V ∧ 𝑥𝐴) → 𝐹 ∈ V)
5337, 51, 19, 52syl3anc 1370 . . . . . . . 8 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 ∈ V)
545ordtype2 9293 . . . . . . . 8 (( E We 𝐴 ∧ E Se 𝐴𝐹 ∈ V) → 𝐹 Isom E , E (dom 𝐹, 𝐴))
5520, 21, 53, 54syl3anc 1370 . . . . . . 7 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Isom E , E (dom 𝐹, 𝐴))
56 isof1o 7194 . . . . . . 7 (𝐹 Isom E , E (dom 𝐹, 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
57 f1ofo 6723 . . . . . . 7 (𝐹:dom 𝐹1-1-onto𝐴𝐹:dom 𝐹onto𝐴)
58 forn 6691 . . . . . . 7 (𝐹:dom 𝐹onto𝐴 → ran 𝐹 = 𝐴)
5955, 56, 57, 584syl 19 . . . . . 6 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ran 𝐹 = 𝐴)
6019, 59eleqtrrd 2842 . . . . 5 ((𝐴 ⊆ On ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥 ∈ ran 𝐹)
6160expr 457 . . . 4 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (¬ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹))
6261pm2.18d 127 . . 3 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ ran 𝐹)
6318, 62eqelssd 3942 . 2 (𝐴 ⊆ On → ran 𝐹 = 𝐴)
6417, 63jca 512 1 (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074   E cep 5494   Se wse 5542   We wwe 5543  dom cdm 5589  ran crn 5590  Ord word 6265  Oncon0 6266   Fn wfn 6428  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434  Smo wsmo 8176  OrdIsocoi 9268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-smo 8177  df-recs 8202  df-oi 9269
This theorem is referenced by:  oiid  9300  hsmexlem1  10182  hsmexlem2  10183
  Copyright terms: Public domain W3C validator