Step | Hyp | Ref
| Expression |
1 | | epweon 7560 |
. . . . . 6
⊢ E We
On |
2 | | wess 5538 |
. . . . . 6
⊢ (𝐴 ⊆ On → ( E We On
→ E We 𝐴)) |
3 | 1, 2 | mpi 20 |
. . . . 5
⊢ (𝐴 ⊆ On → E We 𝐴) |
4 | | epse 5534 |
. . . . 5
⊢ E Se
𝐴 |
5 | | oismo.1 |
. . . . . 6
⊢ 𝐹 = OrdIso( E , 𝐴) |
6 | 5 | oiiso2 9147 |
. . . . 5
⊢ (( E We
𝐴 ∧ E Se 𝐴) → 𝐹 Isom E , E (dom 𝐹, ran 𝐹)) |
7 | 3, 4, 6 | sylancl 589 |
. . . 4
⊢ (𝐴 ⊆ On → 𝐹 Isom E , E (dom 𝐹, ran 𝐹)) |
8 | 5 | oicl 9145 |
. . . . 5
⊢ Ord dom
𝐹 |
9 | 5 | oif 9146 |
. . . . . . 7
⊢ 𝐹:dom 𝐹⟶𝐴 |
10 | | frn 6552 |
. . . . . . 7
⊢ (𝐹:dom 𝐹⟶𝐴 → ran 𝐹 ⊆ 𝐴) |
11 | 9, 10 | ax-mp 5 |
. . . . . 6
⊢ ran 𝐹 ⊆ 𝐴 |
12 | | id 22 |
. . . . . 6
⊢ (𝐴 ⊆ On → 𝐴 ⊆ On) |
13 | 11, 12 | sstrid 3912 |
. . . . 5
⊢ (𝐴 ⊆ On → ran 𝐹 ⊆ On) |
14 | | smoiso2 8106 |
. . . . 5
⊢ ((Ord dom
𝐹 ∧ ran 𝐹 ⊆ On) → ((𝐹:dom 𝐹–onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹))) |
15 | 8, 13, 14 | sylancr 590 |
. . . 4
⊢ (𝐴 ⊆ On → ((𝐹:dom 𝐹–onto→ran 𝐹 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (dom 𝐹, ran 𝐹))) |
16 | 7, 15 | mpbird 260 |
. . 3
⊢ (𝐴 ⊆ On → (𝐹:dom 𝐹–onto→ran 𝐹 ∧ Smo 𝐹)) |
17 | 16 | simprd 499 |
. 2
⊢ (𝐴 ⊆ On → Smo 𝐹) |
18 | 11 | a1i 11 |
. . 3
⊢ (𝐴 ⊆ On → ran 𝐹 ⊆ 𝐴) |
19 | | simprl 771 |
. . . . . 6
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥 ∈ 𝐴) |
20 | 3 | adantr 484 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E We 𝐴) |
21 | 4 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → E Se 𝐴) |
22 | | ffn 6545 |
. . . . . . . . . . 11
⊢ (𝐹:dom 𝐹⟶𝐴 → 𝐹 Fn dom 𝐹) |
23 | 9, 22 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Fn dom 𝐹) |
24 | | simplrr 778 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ¬ 𝑥 ∈ ran 𝐹) |
25 | 3 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E We 𝐴) |
26 | 4 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → E Se 𝐴) |
27 | | simplrl 777 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ 𝐴) |
28 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹) |
29 | 5 | oiiniseg 9149 |
. . . . . . . . . . . . . . 15
⊢ ((( E We
𝐴 ∧ E Se 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ dom 𝐹)) → ((𝐹‘𝑦) E 𝑥 ∨ 𝑥 ∈ ran 𝐹)) |
30 | 25, 26, 27, 28, 29 | syl22anc 839 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) E 𝑥 ∨ 𝑥 ∈ ran 𝐹)) |
31 | 30 | ord 864 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (¬ (𝐹‘𝑦) E 𝑥 → 𝑥 ∈ ran 𝐹)) |
32 | 24, 31 | mt3d 150 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) E 𝑥) |
33 | | epel 5463 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑦) E 𝑥 ↔ (𝐹‘𝑦) ∈ 𝑥) |
34 | 32, 33 | sylib 221 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) ∈ 𝑥) |
35 | 34 | ralrimiva 3105 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ∀𝑦 ∈ dom 𝐹(𝐹‘𝑦) ∈ 𝑥) |
36 | | ffnfv 6935 |
. . . . . . . . . 10
⊢ (𝐹:dom 𝐹⟶𝑥 ↔ (𝐹 Fn dom 𝐹 ∧ ∀𝑦 ∈ dom 𝐹(𝐹‘𝑦) ∈ 𝑥)) |
37 | 23, 35, 36 | sylanbrc 586 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹:dom 𝐹⟶𝑥) |
38 | 9, 22 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐹 Fn dom 𝐹) |
39 | 17 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → Smo 𝐹) |
40 | | smogt 8104 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn dom 𝐹 ∧ Smo 𝐹 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹‘𝑦)) |
41 | 38, 39, 28, 40 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ⊆ (𝐹‘𝑦)) |
42 | | ordelon 6237 |
. . . . . . . . . . . . . . 15
⊢ ((Ord dom
𝐹 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ On) |
43 | 8, 28, 42 | sylancr 590 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ On) |
44 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ⊆ On) |
45 | 44, 27 | sseldd 3902 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑥 ∈ On) |
46 | | ontr2 6260 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ⊆ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ∈ 𝑥) → 𝑦 ∈ 𝑥)) |
47 | 43, 45, 46 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → ((𝑦 ⊆ (𝐹‘𝑦) ∧ (𝐹‘𝑦) ∈ 𝑥) → 𝑦 ∈ 𝑥)) |
48 | 41, 34, 47 | mp2and 699 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ 𝑥) |
49 | 48 | ex 416 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → (𝑦 ∈ dom 𝐹 → 𝑦 ∈ 𝑥)) |
50 | 49 | ssrdv 3907 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹 ⊆ 𝑥) |
51 | 19, 50 | ssexd 5217 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → dom 𝐹 ∈ V) |
52 | | fex2 7711 |
. . . . . . . . 9
⊢ ((𝐹:dom 𝐹⟶𝑥 ∧ dom 𝐹 ∈ V ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ V) |
53 | 37, 51, 19, 52 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 ∈ V) |
54 | 5 | ordtype2 9150 |
. . . . . . . 8
⊢ (( E We
𝐴 ∧ E Se 𝐴 ∧ 𝐹 ∈ V) → 𝐹 Isom E , E (dom 𝐹, 𝐴)) |
55 | 20, 21, 53, 54 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝐹 Isom E , E (dom 𝐹, 𝐴)) |
56 | | isof1o 7132 |
. . . . . . 7
⊢ (𝐹 Isom E , E (dom 𝐹, 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) |
57 | | f1ofo 6668 |
. . . . . . 7
⊢ (𝐹:dom 𝐹–1-1-onto→𝐴 → 𝐹:dom 𝐹–onto→𝐴) |
58 | | forn 6636 |
. . . . . . 7
⊢ (𝐹:dom 𝐹–onto→𝐴 → ran 𝐹 = 𝐴) |
59 | 55, 56, 57, 58 | 4syl 19 |
. . . . . 6
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → ran 𝐹 = 𝐴) |
60 | 19, 59 | eleqtrrd 2841 |
. . . . 5
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐹)) → 𝑥 ∈ ran 𝐹) |
61 | 60 | expr 460 |
. . . 4
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ ran 𝐹 → 𝑥 ∈ ran 𝐹)) |
62 | 61 | pm2.18d 127 |
. . 3
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ran 𝐹) |
63 | 18, 62 | eqelssd 3922 |
. 2
⊢ (𝐴 ⊆ On → ran 𝐹 = 𝐴) |
64 | 17, 63 | jca 515 |
1
⊢ (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴)) |