MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4 Structured version   Visualization version   GIF version

Theorem minveclem4 24036
Description: Lemma for minvec 24040. The convergent point of the Cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
minvec.t 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))
Assertion
Ref Expression
minveclem4 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑟,𝑦,𝐴   𝐽,𝑟,𝑥,𝑦   𝑥,𝑃,𝑦   𝑥,𝐹,𝑦   𝑥,𝑁,𝑦   𝜑,𝑟,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑋,𝑟,𝑥,𝑦   𝑌,𝑟,𝑥,𝑦   𝐷,𝑟,𝑥,𝑦   𝑆,𝑟,𝑥,𝑦   𝑇,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑇(𝑥)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.x . . . 4 𝑋 = (Base‘𝑈)
2 minvec.m . . . 4 = (-g𝑈)
3 minvec.n . . . 4 𝑁 = (norm‘𝑈)
4 minvec.u . . . 4 (𝜑𝑈 ∈ ℂPreHil)
5 minvec.y . . . 4 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.w . . . 4 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
7 minvec.a . . . 4 (𝜑𝐴𝑋)
8 minvec.j . . . 4 𝐽 = (TopOpen‘𝑈)
9 minvec.r . . . 4 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
10 minvec.s . . . 4 𝑆 = inf(𝑅, ℝ, < )
11 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
12 minvec.f . . . 4 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
13 minvec.p . . . 4 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem4a 24034 . . 3 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
1514elin2d 4126 . 2 (𝜑𝑃𝑌)
1611oveqi 7148 . . . . . . 7 (𝐴𝐷𝑃) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑃)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem4b 24035 . . . . . . . 8 (𝜑𝑃𝑋)
187, 17ovresd 7295 . . . . . . 7 (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑃) = (𝐴(dist‘𝑈)𝑃))
1916, 18syl5eq 2845 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) = (𝐴(dist‘𝑈)𝑃))
20 cphngp 23778 . . . . . . . 8 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
214, 20syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmGrp)
22 eqid 2798 . . . . . . . 8 (dist‘𝑈) = (dist‘𝑈)
233, 1, 2, 22ngpds 23210 . . . . . . 7 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑃𝑋) → (𝐴(dist‘𝑈)𝑃) = (𝑁‘(𝐴 𝑃)))
2421, 7, 17, 23syl3anc 1368 . . . . . 6 (𝜑 → (𝐴(dist‘𝑈)𝑃) = (𝑁‘(𝐴 𝑃)))
2519, 24eqtrd 2833 . . . . 5 (𝜑 → (𝐴𝐷𝑃) = (𝑁‘(𝐴 𝑃)))
2625adantr 484 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) = (𝑁‘(𝐴 𝑃)))
27 ngpms 23206 . . . . . . . 8 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
281, 11msmet 23064 . . . . . . . 8 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
2921, 27, 283syl 18 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
30 metcl 22939 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑃𝑋) → (𝐴𝐷𝑃) ∈ ℝ)
3129, 7, 17, 30syl3anc 1368 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) ∈ ℝ)
3231adantr 484 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ∈ ℝ)
331, 2, 3, 4, 5, 6, 7, 8, 9, 10minveclem4c 24029 . . . . . 6 (𝜑𝑆 ∈ ℝ)
3433adantr 484 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ∈ ℝ)
3521adantr 484 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmGrp)
36 cphlmod 23779 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
374, 36syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
3837adantr 484 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑈 ∈ LMod)
397adantr 484 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
40 eqid 2798 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
411, 40lssss 19701 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
425, 41syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
4342sselda 3915 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
441, 2lmodvsubcl 19672 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋) → (𝐴 𝑦) ∈ 𝑋)
4538, 39, 43, 44syl3anc 1368 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴 𝑦) ∈ 𝑋)
461, 3nmcl 23222 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
4735, 45, 46syl2anc 587 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
4833, 31ltnled 10776 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ ¬ (𝐴𝐷𝑃) ≤ 𝑆))
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12minveclem3b 24032 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (fBas‘𝑌))
50 fbsspw 22437 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
5149, 50syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ⊆ 𝒫 𝑌)
5242sspwd 4512 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋)
5351, 52sstrd 3925 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ⊆ 𝒫 𝑋)
541fvexi 6659 . . . . . . . . . . . . . . . . . . 19 𝑋 ∈ V
5554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ V)
56 fbasweak 22470 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
5749, 53, 55, 56syl3anc 1368 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (fBas‘𝑋))
5857adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐹 ∈ (fBas‘𝑋))
59 fgcl 22483 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
6058, 59syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
61 ssfg 22477 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
6258, 61syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐹 ⊆ (𝑋filGen𝐹))
63 minvec.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))
6431, 33readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ)
6564rehalfcld 11872 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
6665resqcld 13607 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℝ)
6733resqcld 13607 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆↑2) ∈ ℝ)
6866, 67resubcld 11057 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
6968adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
7033, 31, 33ltadd1d 11222 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ (𝑆 + 𝑆) < ((𝐴𝐷𝑃) + 𝑆)))
7133recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ ℂ)
72712timesd 11868 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆))
7372breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷𝑃) + 𝑆)))
74 2re 11699 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℝ
75 2pos 11728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < 2
7674, 75pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
78 ltmuldiv2 11503 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
7933, 64, 77, 78syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
8070, 73, 793bitr2d 310 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
811, 2, 3, 4, 5, 6, 7, 8, 9minveclem1 24028 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
8281simp3d 1141 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
8381simp1d 1139 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑅 ⊆ ℝ)
8481simp2d 1140 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑅 ≠ ∅)
85 0re 10632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
86 breq1 5033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
8786ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8887rspcev 3571 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
8985, 82, 88sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
9085a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 0 ∈ ℝ)
91 infregelb 11612 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9283, 84, 89, 90, 91syl31anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9382, 92mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
9493, 10breqtrrdi 5072 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ≤ 𝑆)
95 metge0 22952 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑃𝑋) → 0 ≤ (𝐴𝐷𝑃))
9629, 7, 17, 95syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 ≤ (𝐴𝐷𝑃))
9731, 33, 96, 94addge0d 11205 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 0 ≤ ((𝐴𝐷𝑃) + 𝑆))
98 divge0 11498 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷𝑃) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
9964, 97, 77, 98syl21anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
10033, 65, 94, 99lt2sqd 13615 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
10167, 66posdifd 11216 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑆↑2) < ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))))
10280, 100, 1013bitrd 308 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))))
103102biimpa 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)))
10469, 103elrpd 12416 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ+)
10563, 104eqeltrid 2894 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑇 ∈ ℝ+)
1065adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑌 ∈ (LSubSp‘𝑈))
107 rabexg 5198 . . . . . . . . . . . . . . . . . . 19 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V)
108106, 107syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V)
109 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
110 oveq2 7143 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑇 → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + 𝑇))
111110breq2d 5042 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑇 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)))
112111rabbidv 3427 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑇 → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)})
113109, 112elrnmpt1s 5793 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ ℝ+ ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
114105, 108, 113syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
115114, 12eleqtrrdi 2901 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ 𝐹)
11662, 115sseldd 3916 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ (𝑋filGen𝐹))
117 ssrab2 4007 . . . . . . . . . . . . . . . 16 {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋
118117a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋)
11963oveq2i 7146 . . . . . . . . . . . . . . . . . . . 20 ((𝑆↑2) + 𝑇) = ((𝑆↑2) + (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)))
12067ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝑆↑2) ∈ ℝ)
121120recnd 10658 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝑆↑2) ∈ ℂ)
12265ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
123122resqcld 13607 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℝ)
124123recnd 10658 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℂ)
125121, 124pncan3d 10989 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝑆↑2) + (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))) = ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))
126119, 125syl5eq 2845 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝑆↑2) + 𝑇) = ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))
127126breq2d 5042 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
12829ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝐷 ∈ (Met‘𝑋))
1297ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝐴𝑋)
13043adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝑦𝑋)
131 metcl 22939 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) ∈ ℝ)
132128, 129, 130, 131syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) ∈ ℝ)
133 metge0 22952 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑦𝑋) → 0 ≤ (𝐴𝐷𝑦))
134128, 129, 130, 133syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 0 ≤ (𝐴𝐷𝑦))
13599ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
136132, 122, 134, 135le2sqd 13616 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
137127, 136bitr4d 285 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇) ↔ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
138137rabbidva 3425 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} = {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
13942adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑌𝑋)
140 rabss2 4005 . . . . . . . . . . . . . . . . 17 (𝑌𝑋 → {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
141139, 140syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
142138, 141eqsstrd 3953 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
143 filss 22458 . . . . . . . . . . . . . . 15 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ ({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ (𝑋filGen𝐹) ∧ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋 ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹))
14460, 116, 118, 142, 143syl13anc 1369 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹))
145 flimclsi 22583 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹) → (𝐽 fLim (𝑋filGen𝐹)) ⊆ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
146144, 145syl 17 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐽 fLim (𝑋filGen𝐹)) ⊆ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
14714elin1d 4125 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ (𝐽 fLim (𝑋filGen𝐹)))
148147adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ (𝐽 fLim (𝑋filGen𝐹)))
149146, 148sseldd 3916 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
150 ngpxms 23207 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp)
1511, 11xmsxmet 23063 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
15221, 150, 1513syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (∞Met‘𝑋))
153152adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐷 ∈ (∞Met‘𝑋))
1547adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐴𝑋)
15565adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
156155rexrd 10680 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ*)
157 eqid 2798 . . . . . . . . . . . . . . . 16 (MetOpen‘𝐷) = (MetOpen‘𝐷)
158 eqid 2798 . . . . . . . . . . . . . . . 16 {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}
159157, 158blcld 23112 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ*) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘(MetOpen‘𝐷)))
160153, 154, 156, 159syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘(MetOpen‘𝐷)))
1618, 1, 11xmstopn 23058 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
16221, 150, 1613syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐽 = (MetOpen‘𝐷))
163162adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐽 = (MetOpen‘𝐷))
164163fveq2d 6649 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘𝐷)))
165160, 164eleqtrrd 2893 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘𝐽))
166 cldcls 21647 . . . . . . . . . . . . 13 ({𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
167165, 166syl 17 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷𝑃)) → ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
168149, 167eleqtrd 2892 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
169 oveq2 7143 . . . . . . . . . . . . . 14 (𝑦 = 𝑃 → (𝐴𝐷𝑦) = (𝐴𝐷𝑃))
170169breq1d 5040 . . . . . . . . . . . . 13 (𝑦 = 𝑃 → ((𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
171170elrab 3628 . . . . . . . . . . . 12 (𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ↔ (𝑃𝑋 ∧ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
172171simprbi 500 . . . . . . . . . . 11 (𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} → (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
173168, 172syl 17 . . . . . . . . . 10 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
17431, 33, 31leadd2d 11224 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐷𝑃) ≤ 𝑆 ↔ ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆)))
17531recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐷𝑃) ∈ ℂ)
1761752timesd 11868 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴𝐷𝑃)) = ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)))
177176breq1d 5040 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆)))
178 lemuldiv2 11510 . . . . . . . . . . . . . 14 (((𝐴𝐷𝑃) ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
17976, 178mp3an3 1447 . . . . . . . . . . . . 13 (((𝐴𝐷𝑃) ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
18031, 64, 179syl2anc 587 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
181174, 177, 1803bitr2d 310 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐷𝑃) ≤ 𝑆 ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
182181biimpar 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) → (𝐴𝐷𝑃) ≤ 𝑆)
183173, 182syldan 594 . . . . . . . . 9 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐴𝐷𝑃) ≤ 𝑆)
184183ex 416 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷𝑃) → (𝐴𝐷𝑃) ≤ 𝑆))
18548, 184sylbird 263 . . . . . . 7 (𝜑 → (¬ (𝐴𝐷𝑃) ≤ 𝑆 → (𝐴𝐷𝑃) ≤ 𝑆))
186185pm2.18d 127 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) ≤ 𝑆)
187186adantr 484 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ≤ 𝑆)
18883adantr 484 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑅 ⊆ ℝ)
18989adantr 484 . . . . . . 7 ((𝜑𝑦𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
190 simpr 488 . . . . . . . . 9 ((𝜑𝑦𝑌) → 𝑦𝑌)
191 fvex 6658 . . . . . . . . 9 (𝑁‘(𝐴 𝑦)) ∈ V
192 eqid 2798 . . . . . . . . . 10 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
193192elrnmpt1 5794 . . . . . . . . 9 ((𝑦𝑌 ∧ (𝑁‘(𝐴 𝑦)) ∈ V) → (𝑁‘(𝐴 𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))))
194190, 191, 193sylancl 589 . . . . . . . 8 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))))
195194, 9eleqtrrdi 2901 . . . . . . 7 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ 𝑅)
196 infrelb 11613 . . . . . . 7 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴 𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 𝑦)))
197188, 189, 195, 196syl3anc 1368 . . . . . 6 ((𝜑𝑦𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 𝑦)))
19810, 197eqbrtrid 5065 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ≤ (𝑁‘(𝐴 𝑦)))
19932, 34, 47, 187, 198letrd 10786 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ≤ (𝑁‘(𝐴 𝑦)))
20026, 199eqbrtrrd 5054 . . 3 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦)))
201200ralrimiva 3149 . 2 (𝜑 → ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦)))
202 oveq2 7143 . . . . . 6 (𝑥 = 𝑃 → (𝐴 𝑥) = (𝐴 𝑃))
203202fveq2d 6649 . . . . 5 (𝑥 = 𝑃 → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 𝑃)))
204203breq1d 5040 . . . 4 (𝑥 = 𝑃 → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))))
205204ralbidv 3162 . . 3 (𝑥 = 𝑃 → (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))))
206205rspcev 3571 . 2 ((𝑃𝑌 ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
20715, 201, 206syl2anc 587 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  c0 4243  𝒫 cpw 4497   cuni 4800   class class class wbr 5030  cmpt 5110   × cxp 5517  ran crn 5520  cres 5521  cfv 6324  (class class class)co 7135  infcinf 8889  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  cexp 13425  Basecbs 16475  s cress 16476  distcds 16566  TopOpenctopn 16687  -gcsg 18097  LModclmod 19627  LSubSpclss 19696  ∞Metcxmet 20076  Metcmet 20077  fBascfbas 20079  filGencfg 20080  MetOpencmopn 20081  Clsdccld 21621  clsccl 21623  Filcfil 22450   fLim cflim 22539  ∞MetSpcxms 22924  MetSpcms 22925  normcnm 23183  NrmGrpcngp 23184  ℂPreHilccph 23771  CMetSpccms 23936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-phl 20315  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-haus 21920  df-fil 22451  df-flim 22544  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-nlm 23193  df-clm 23668  df-cph 23773  df-cfil 23859  df-cmet 23861  df-cms 23939
This theorem is referenced by:  minveclem5  24037
  Copyright terms: Public domain W3C validator