Step | Hyp | Ref
| Expression |
1 | | inss2 4059 |
. . 3
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ 𝑌 |
2 | | minvec.x |
. . . 4
⊢ 𝑋 = (Base‘𝑈) |
3 | | minvec.m |
. . . 4
⊢ − =
(-g‘𝑈) |
4 | | minvec.n |
. . . 4
⊢ 𝑁 = (norm‘𝑈) |
5 | | minvec.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
6 | | minvec.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
7 | | minvec.w |
. . . 4
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
8 | | minvec.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
9 | | minvec.j |
. . . 4
⊢ 𝐽 = (TopOpen‘𝑈) |
10 | | minvec.r |
. . . 4
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
11 | | minvec.s |
. . . 4
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
12 | | minvec.d |
. . . 4
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
13 | | minvec.f |
. . . 4
⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
14 | | minvec.p |
. . . 4
⊢ 𝑃 = ∪
(𝐽 fLim (𝑋filGen𝐹)) |
15 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | minveclem4a 23599 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
16 | 1, 15 | sseldi 3826 |
. 2
⊢ (𝜑 → 𝑃 ∈ 𝑌) |
17 | 12 | oveqi 6919 |
. . . . . . 7
⊢ (𝐴𝐷𝑃) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑃) |
18 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | minveclem4b 23600 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
19 | 8, 18 | ovresd 7062 |
. . . . . . 7
⊢ (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑃) = (𝐴(dist‘𝑈)𝑃)) |
20 | 17, 19 | syl5eq 2874 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐷𝑃) = (𝐴(dist‘𝑈)𝑃)) |
21 | | cphngp 23343 |
. . . . . . . 8
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
22 | 5, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
23 | | eqid 2826 |
. . . . . . . 8
⊢
(dist‘𝑈) =
(dist‘𝑈) |
24 | 4, 2, 3, 23 | ngpds 22779 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝐴(dist‘𝑈)𝑃) = (𝑁‘(𝐴 − 𝑃))) |
25 | 22, 8, 18, 24 | syl3anc 1496 |
. . . . . 6
⊢ (𝜑 → (𝐴(dist‘𝑈)𝑃) = (𝑁‘(𝐴 − 𝑃))) |
26 | 20, 25 | eqtrd 2862 |
. . . . 5
⊢ (𝜑 → (𝐴𝐷𝑃) = (𝑁‘(𝐴 − 𝑃))) |
27 | 26 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑃) = (𝑁‘(𝐴 − 𝑃))) |
28 | | ngpms 22775 |
. . . . . . . 8
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp) |
29 | 2, 12 | msmet 22633 |
. . . . . . . 8
⊢ (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) |
30 | 22, 28, 29 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
31 | | metcl 22508 |
. . . . . . 7
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝐴𝐷𝑃) ∈ ℝ) |
32 | 30, 8, 18, 31 | syl3anc 1496 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐷𝑃) ∈ ℝ) |
33 | 32 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑃) ∈ ℝ) |
34 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minveclem4c 23594 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ℝ) |
35 | 34 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑆 ∈ ℝ) |
36 | 22 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ NrmGrp) |
37 | | cphlmod 23344 |
. . . . . . . . 9
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
LMod) |
38 | 5, 37 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
39 | 38 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ LMod) |
40 | 8 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
41 | | eqid 2826 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
42 | 2, 41 | lssss 19294 |
. . . . . . . . 9
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
43 | 6, 42 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
44 | 43 | sselda 3828 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
45 | 2, 3 | lmodvsubcl 19265 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴 − 𝑦) ∈ 𝑋) |
46 | 39, 40, 44, 45 | syl3anc 1496 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴 − 𝑦) ∈ 𝑋) |
47 | 2, 4 | nmcl 22791 |
. . . . . 6
⊢ ((𝑈 ∈ NrmGrp ∧ (𝐴 − 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
48 | 36, 46, 47 | syl2anc 581 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑦)) ∈ ℝ) |
49 | 34, 32 | ltnled 10504 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ ¬ (𝐴𝐷𝑃) ≤ 𝑆)) |
50 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | minveclem3b 23597 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) |
51 | | fbsspw 22007 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑌) |
53 | | sspwb 5139 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 ⊆ 𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋) |
54 | 43, 53 | sylib 210 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
55 | 52, 54 | sstrd 3838 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑋) |
56 | 2 | fvexi 6448 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑋 ∈ V |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈ V) |
58 | | fbasweak 22040 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋)) |
59 | 50, 55, 57, 58 | syl3anc 1496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑋)) |
60 | 59 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝐹 ∈ (fBas‘𝑋)) |
61 | | fgcl 22053 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
63 | | ssfg 22047 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
64 | 60, 63 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝐹 ⊆ (𝑋filGen𝐹)) |
65 | | minvec.t |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) |
66 | 32, 34 | readdcld 10387 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ) |
67 | 66 | rehalfcld 11606 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ) |
68 | 67 | resqcld 13332 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈
ℝ) |
69 | 34 | resqcld 13332 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑆↑2) ∈ ℝ) |
70 | 68, 69 | resubcld 10783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ) |
71 | 70 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ) |
72 | 34, 32, 34 | ltadd1d 10946 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ (𝑆 + 𝑆) < ((𝐴𝐷𝑃) + 𝑆))) |
73 | 34 | recnd 10386 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑆 ∈ ℂ) |
74 | 73 | 2timesd 11602 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆)) |
75 | 74 | breq1d 4884 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷𝑃) + 𝑆))) |
76 | | 2re 11426 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 2 ∈
ℝ |
77 | | 2pos 11462 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 <
2 |
78 | 76, 77 | pm3.2i 464 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (2 ∈
ℝ ∧ 0 < 2) |
79 | 78 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (2 ∈ ℝ ∧ 0
< 2)) |
80 | | ltmuldiv2 11228 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑆 ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2))) |
81 | 34, 66, 79, 80 | syl3anc 1496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2))) |
82 | 72, 75, 81 | 3bitr2d 299 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2))) |
83 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | minveclem1 23593 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
84 | 83 | simp3d 1180 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
85 | 83 | simp1d 1178 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑅 ⊆ ℝ) |
86 | 83 | simp2d 1179 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑅 ≠ ∅) |
87 | | 0re 10359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
ℝ |
88 | | breq1 4877 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
89 | 88 | ralbidv 3196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
90 | 89 | rspcev 3527 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
91 | 87, 84, 90 | sylancr 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
92 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 0 ∈
ℝ) |
93 | | infregelb 11338 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) ∧ 0 ∈ ℝ) → (0 ≤
inf(𝑅, ℝ, < )
↔ ∀𝑤 ∈
𝑅 0 ≤ 𝑤)) |
94 | 85, 86, 91, 92, 93 | syl31anc 1498 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔
∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
95 | 84, 94 | mpbird 249 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 0 ≤ inf(𝑅, ℝ, <
)) |
96 | 95, 11 | syl6breqr 4916 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 ≤ 𝑆) |
97 | | metge0 22521 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝑃)) |
98 | 30, 8, 18, 97 | syl3anc 1496 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 0 ≤ (𝐴𝐷𝑃)) |
99 | 32, 34, 98, 96 | addge0d 10929 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 0 ≤ ((𝐴𝐷𝑃) + 𝑆)) |
100 | | divge0 11223 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷𝑃) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2))
→ 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) |
101 | 66, 99, 79, 100 | syl21anc 873 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) |
102 | 34, 67, 96, 101 | lt2sqd 13340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))) |
103 | 69, 68 | posdifd 10940 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑆↑2) < ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
104 | 82, 102, 103 | 3bitrd 297 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
105 | 104 | biimpa 470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))) |
106 | 71, 105 | elrpd 12154 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈
ℝ+) |
107 | 65, 106 | syl5eqel 2911 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝑇 ∈
ℝ+) |
108 | 6 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝑌 ∈ (LSubSp‘𝑈)) |
109 | | rabexg 5037 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑌 ∈ (LSubSp‘𝑈) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V) |
110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V) |
111 | | eqid 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
112 | | oveq2 6914 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 = 𝑇 → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + 𝑇)) |
113 | 112 | breq2d 4886 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = 𝑇 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇))) |
114 | 113 | rabbidv 3403 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝑇 → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)}) |
115 | 111, 114 | elrnmpt1s 5607 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑇 ∈ ℝ+
∧ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
116 | 107, 110,
115 | syl2anc 581 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
117 | 116, 13 | syl6eleqr 2918 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ 𝐹) |
118 | 64, 117 | sseldd 3829 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ (𝑋filGen𝐹)) |
119 | | ssrab2 3913 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋 |
120 | 119 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋) |
121 | 65 | oveq2i 6917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑆↑2) + 𝑇) = ((𝑆↑2) + (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))) |
122 | 69 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → (𝑆↑2) ∈ ℝ) |
123 | 122 | recnd 10386 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → (𝑆↑2) ∈ ℂ) |
124 | 67 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ) |
125 | 124 | resqcld 13332 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈
ℝ) |
126 | 125 | recnd 10386 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈
ℂ) |
127 | 123, 126 | pncan3d 10717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → ((𝑆↑2) + (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))) = ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)) |
128 | 121, 127 | syl5eq 2874 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → ((𝑆↑2) + 𝑇) = ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)) |
129 | 128 | breq2d 4886 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))) |
130 | 30 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ (Met‘𝑋)) |
131 | 8 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
132 | 44 | adantlr 708 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
133 | | metcl 22508 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝐷𝑦) ∈ ℝ) |
134 | 130, 131,
132, 133 | syl3anc 1496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑦) ∈ ℝ) |
135 | | metge0 22521 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝑦)) |
136 | 130, 131,
132, 135 | syl3anc 1496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝐴𝐷𝑦)) |
137 | 101 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) |
138 | 134, 124,
136, 137 | le2sqd 13341 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → ((𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))) |
139 | 129, 138 | bitr4d 274 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦 ∈ 𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇) ↔ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))) |
140 | 139 | rabbidva 3402 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} = {𝑦 ∈ 𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) |
141 | 43 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝑌 ⊆ 𝑋) |
142 | | rabss2 3911 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑌 ⊆ 𝑋 → {𝑦 ∈ 𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) |
143 | 141, 142 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) |
144 | 140, 143 | eqsstrd 3865 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ⊆ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) |
145 | | filss 22028 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ ({𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ (𝑋filGen𝐹) ∧ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ⊆ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})) → {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹)) |
146 | 62, 118, 120, 144, 145 | syl13anc 1497 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹)) |
147 | | flimclsi 22153 |
. . . . . . . . . . . . . 14
⊢ ({𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹) → (𝐽 fLim (𝑋filGen𝐹)) ⊆ ((cls‘𝐽)‘{𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})) |
148 | 146, 147 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (𝐽 fLim (𝑋filGen𝐹)) ⊆ ((cls‘𝐽)‘{𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})) |
149 | | inss1 4058 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌) ⊆ (𝐽 fLim (𝑋filGen𝐹)) |
150 | 149, 15 | sseldi 3826 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
151 | 150 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ (𝐽 fLim (𝑋filGen𝐹))) |
152 | 148, 151 | sseldd 3829 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ ((cls‘𝐽)‘{𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})) |
153 | | ngpxms 22776 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈
∞MetSp) |
154 | 2, 12 | xmsxmet 22632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ ∞MetSp →
𝐷 ∈
(∞Met‘𝑋)) |
155 | 22, 153, 154 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
156 | 155 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝐷 ∈ (∞Met‘𝑋)) |
157 | 8 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝐴 ∈ 𝑋) |
158 | 67 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ) |
159 | 158 | rexrd 10407 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈
ℝ*) |
160 | | eqid 2826 |
. . . . . . . . . . . . . . . 16
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
161 | | eqid 2826 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} = {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} |
162 | 160, 161 | blcld 22681 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ*) →
{𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈
(Clsd‘(MetOpen‘𝐷))) |
163 | 156, 157,
159, 162 | syl3anc 1496 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈
(Clsd‘(MetOpen‘𝐷))) |
164 | 9, 2, 12 | xmstopn 22627 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ ∞MetSp →
𝐽 = (MetOpen‘𝐷)) |
165 | 22, 153, 164 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐽 = (MetOpen‘𝐷)) |
166 | 165 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝐽 = (MetOpen‘𝐷)) |
167 | 166 | fveq2d 6438 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘𝐷))) |
168 | 163, 167 | eleqtrrd 2910 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘𝐽)) |
169 | | cldcls 21218 |
. . . . . . . . . . . . 13
⊢ ({𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘{𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) = {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) |
170 | 168, 169 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → ((cls‘𝐽)‘{𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) = {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) |
171 | 152, 170 | eleqtrd 2909 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) |
172 | | oveq2 6914 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑃 → (𝐴𝐷𝑦) = (𝐴𝐷𝑃)) |
173 | 172 | breq1d 4884 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑃 → ((𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))) |
174 | 173 | elrab 3586 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ↔ (𝑃 ∈ 𝑋 ∧ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))) |
175 | 174 | simprbi 492 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ {𝑦 ∈ 𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} → (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) |
176 | 171, 175 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) |
177 | 32, 34, 32 | leadd2d 10948 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴𝐷𝑃) ≤ 𝑆 ↔ ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆))) |
178 | 32 | recnd 10386 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴𝐷𝑃) ∈ ℂ) |
179 | 178 | 2timesd 11602 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 · (𝐴𝐷𝑃)) = ((𝐴𝐷𝑃) + (𝐴𝐷𝑃))) |
180 | 179 | breq1d 4884 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆))) |
181 | | lemuldiv2 11235 |
. . . . . . . . . . . . . 14
⊢ (((𝐴𝐷𝑃) ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))) |
182 | 78, 181 | mp3an3 1580 |
. . . . . . . . . . . . 13
⊢ (((𝐴𝐷𝑃) ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))) |
183 | 32, 66, 182 | syl2anc 581 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))) |
184 | 177, 180,
183 | 3bitr2d 299 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴𝐷𝑃) ≤ 𝑆 ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))) |
185 | 184 | biimpar 471 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) → (𝐴𝐷𝑃) ≤ 𝑆) |
186 | 176, 185 | syldan 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷𝑃)) → (𝐴𝐷𝑃) ≤ 𝑆) |
187 | 186 | ex 403 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 < (𝐴𝐷𝑃) → (𝐴𝐷𝑃) ≤ 𝑆)) |
188 | 49, 187 | sylbird 252 |
. . . . . . 7
⊢ (𝜑 → (¬ (𝐴𝐷𝑃) ≤ 𝑆 → (𝐴𝐷𝑃) ≤ 𝑆)) |
189 | 188 | pm2.18d 127 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐷𝑃) ≤ 𝑆) |
190 | 189 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑃) ≤ 𝑆) |
191 | 85 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑅 ⊆ ℝ) |
192 | 91 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
193 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
194 | | fvex 6447 |
. . . . . . . . 9
⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V |
195 | | eqid 2826 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
196 | 195 | elrnmpt1 5608 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑌 ∧ (𝑁‘(𝐴 − 𝑦)) ∈ V) → (𝑁‘(𝐴 − 𝑦)) ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))) |
197 | 193, 194,
196 | sylancl 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑦)) ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))) |
198 | 197, 10 | syl6eleqr 2918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑦)) ∈ 𝑅) |
199 | | infrelb 11339 |
. . . . . . 7
⊢ ((𝑅 ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ∧ (𝑁‘(𝐴 − 𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 − 𝑦))) |
200 | 191, 192,
198, 199 | syl3anc 1496 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 − 𝑦))) |
201 | 11, 200 | syl5eqbr 4909 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑆 ≤ (𝑁‘(𝐴 − 𝑦))) |
202 | 33, 35, 48, 190, 201 | letrd 10514 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑃) ≤ (𝑁‘(𝐴 − 𝑦))) |
203 | 27, 202 | eqbrtrrd 4898 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴 − 𝑃)) ≤ (𝑁‘(𝐴 − 𝑦))) |
204 | 203 | ralrimiva 3176 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑃)) ≤ (𝑁‘(𝐴 − 𝑦))) |
205 | | oveq2 6914 |
. . . . . 6
⊢ (𝑥 = 𝑃 → (𝐴 − 𝑥) = (𝐴 − 𝑃)) |
206 | 205 | fveq2d 6438 |
. . . . 5
⊢ (𝑥 = 𝑃 → (𝑁‘(𝐴 − 𝑥)) = (𝑁‘(𝐴 − 𝑃))) |
207 | 206 | breq1d 4884 |
. . . 4
⊢ (𝑥 = 𝑃 → ((𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)) ↔ (𝑁‘(𝐴 − 𝑃)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
208 | 207 | ralbidv 3196 |
. . 3
⊢ (𝑥 = 𝑃 → (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑃)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
209 | 208 | rspcev 3527 |
. 2
⊢ ((𝑃 ∈ 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑃)) ≤ (𝑁‘(𝐴 − 𝑦))) → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
210 | 16, 204, 209 | syl2anc 581 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |