MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4 Structured version   Visualization version   GIF version

Theorem minveclem4 25480
Description: Lemma for minvec 25484. The convergent point of the Cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
minvec.t 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))
Assertion
Ref Expression
minveclem4 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑟,𝑦,𝐴   𝐽,𝑟,𝑥,𝑦   𝑥,𝑃,𝑦   𝑥,𝐹,𝑦   𝑥,𝑁,𝑦   𝜑,𝑟,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑋,𝑟,𝑥,𝑦   𝑌,𝑟,𝑥,𝑦   𝐷,𝑟,𝑥,𝑦   𝑆,𝑟,𝑥,𝑦   𝑇,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑇(𝑥)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.x . . . 4 𝑋 = (Base‘𝑈)
2 minvec.m . . . 4 = (-g𝑈)
3 minvec.n . . . 4 𝑁 = (norm‘𝑈)
4 minvec.u . . . 4 (𝜑𝑈 ∈ ℂPreHil)
5 minvec.y . . . 4 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.w . . . 4 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
7 minvec.a . . . 4 (𝜑𝐴𝑋)
8 minvec.j . . . 4 𝐽 = (TopOpen‘𝑈)
9 minvec.r . . . 4 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
10 minvec.s . . . 4 𝑆 = inf(𝑅, ℝ, < )
11 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
12 minvec.f . . . 4 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
13 minvec.p . . . 4 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem4a 25478 . . 3 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
1514elin2d 4215 . 2 (𝜑𝑃𝑌)
1611oveqi 7444 . . . . . . 7 (𝐴𝐷𝑃) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑃)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem4b 25479 . . . . . . . 8 (𝜑𝑃𝑋)
187, 17ovresd 7600 . . . . . . 7 (𝜑 → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑃) = (𝐴(dist‘𝑈)𝑃))
1916, 18eqtrid 2787 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) = (𝐴(dist‘𝑈)𝑃))
20 cphngp 25221 . . . . . . . 8 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
214, 20syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmGrp)
22 eqid 2735 . . . . . . . 8 (dist‘𝑈) = (dist‘𝑈)
233, 1, 2, 22ngpds 24633 . . . . . . 7 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑃𝑋) → (𝐴(dist‘𝑈)𝑃) = (𝑁‘(𝐴 𝑃)))
2421, 7, 17, 23syl3anc 1370 . . . . . 6 (𝜑 → (𝐴(dist‘𝑈)𝑃) = (𝑁‘(𝐴 𝑃)))
2519, 24eqtrd 2775 . . . . 5 (𝜑 → (𝐴𝐷𝑃) = (𝑁‘(𝐴 𝑃)))
2625adantr 480 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) = (𝑁‘(𝐴 𝑃)))
27 ngpms 24629 . . . . . . . 8 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
281, 11msmet 24483 . . . . . . . 8 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
2921, 27, 283syl 18 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
30 metcl 24358 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑃𝑋) → (𝐴𝐷𝑃) ∈ ℝ)
3129, 7, 17, 30syl3anc 1370 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) ∈ ℝ)
3231adantr 480 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ∈ ℝ)
331, 2, 3, 4, 5, 6, 7, 8, 9, 10minveclem4c 25473 . . . . . 6 (𝜑𝑆 ∈ ℝ)
3433adantr 480 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ∈ ℝ)
3521adantr 480 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmGrp)
36 cphlmod 25222 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
374, 36syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
3837adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑈 ∈ LMod)
397adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
40 eqid 2735 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
411, 40lssss 20952 . . . . . . . . 9 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
425, 41syl 17 . . . . . . . 8 (𝜑𝑌𝑋)
4342sselda 3995 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
441, 2lmodvsubcl 20922 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑦𝑋) → (𝐴 𝑦) ∈ 𝑋)
4538, 39, 43, 44syl3anc 1370 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴 𝑦) ∈ 𝑋)
461, 3nmcl 24645 . . . . . 6 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑦) ∈ 𝑋) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
4735, 45, 46syl2anc 584 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ℝ)
4833, 31ltnled 11406 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ ¬ (𝐴𝐷𝑃) ≤ 𝑆))
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12minveclem3b 25476 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (fBas‘𝑌))
50 fbsspw 23856 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (fBas‘𝑌) → 𝐹 ⊆ 𝒫 𝑌)
5149, 50syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ⊆ 𝒫 𝑌)
5242sspwd 4618 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 𝒫 𝑌 ⊆ 𝒫 𝑋)
5351, 52sstrd 4006 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ⊆ 𝒫 𝑋)
541fvexi 6921 . . . . . . . . . . . . . . . . . . 19 𝑋 ∈ V
5554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ V)
56 fbasweak 23889 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (fBas‘𝑌) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
5749, 53, 55, 56syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (fBas‘𝑋))
5857adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐹 ∈ (fBas‘𝑋))
59 fgcl 23902 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
6058, 59syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
61 ssfg 23896 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
6258, 61syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐹 ⊆ (𝑋filGen𝐹))
63 minvec.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))
6431, 33readdcld 11288 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ)
6564rehalfcld 12511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
6665resqcld 14162 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℝ)
6733resqcld 14162 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆↑2) ∈ ℝ)
6866, 67resubcld 11689 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
7033, 31, 33ltadd1d 11854 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ (𝑆 + 𝑆) < ((𝐴𝐷𝑃) + 𝑆)))
7133recnd 11287 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ ℂ)
72712timesd 12507 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆))
7372breq1d 5158 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷𝑃) + 𝑆)))
74 2re 12338 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℝ
75 2pos 12367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < 2
7674, 75pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℝ ∧ 0 < 2)
7776a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
78 ltmuldiv2 12140 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
7933, 64, 77, 78syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷𝑃) + 𝑆) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
8070, 73, 793bitr2d 307 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ 𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2)))
811, 2, 3, 4, 5, 6, 7, 8, 9minveclem1 25472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
8281simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
8381simp1d 1141 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑅 ⊆ ℝ)
8481simp2d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑅 ≠ ∅)
85 0re 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
86 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
8786ralbidv 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8887rspcev 3622 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
8985, 82, 88sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
9085a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 0 ∈ ℝ)
91 infregelb 12250 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9283, 84, 89, 90, 91syl31anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9382, 92mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
9493, 10breqtrrdi 5190 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ≤ 𝑆)
95 metge0 24371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑃𝑋) → 0 ≤ (𝐴𝐷𝑃))
9629, 7, 17, 95syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 ≤ (𝐴𝐷𝑃))
9731, 33, 96, 94addge0d 11837 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 0 ≤ ((𝐴𝐷𝑃) + 𝑆))
98 divge0 12135 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷𝑃) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
9964, 97, 77, 98syl21anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
10033, 65, 94, 99lt2sqd 14292 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆 < (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
10167, 66posdifd 11848 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑆↑2) < ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))))
10280, 100, 1013bitrd 305 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑆 < (𝐴𝐷𝑃) ↔ 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))))
103102biimpa 476 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 0 < (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)))
10469, 103elrpd 13072 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ+)
10563, 104eqeltrid 2843 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑇 ∈ ℝ+)
1065adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑌 ∈ (LSubSp‘𝑈))
107 rabexg 5343 . . . . . . . . . . . . . . . . . . 19 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V)
108106, 107syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V)
109 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
110 oveq2 7439 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑇 → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + 𝑇))
111110breq2d 5160 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑇 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)))
112111rabbidv 3441 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑇 → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)})
113109, 112elrnmpt1s 5973 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ ℝ+ ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ V) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
114105, 108, 113syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
115114, 12eleqtrrdi 2850 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ 𝐹)
11662, 115sseldd 3996 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ (𝑋filGen𝐹))
117 ssrab2 4090 . . . . . . . . . . . . . . . 16 {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋
118117a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋)
11963oveq2i 7442 . . . . . . . . . . . . . . . . . . . 20 ((𝑆↑2) + 𝑇) = ((𝑆↑2) + (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)))
12067ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝑆↑2) ∈ ℝ)
121120recnd 11287 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝑆↑2) ∈ ℂ)
12265ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
123122resqcld 14162 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℝ)
124123recnd 11287 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) ∈ ℂ)
125121, 124pncan3d 11621 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝑆↑2) + (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2))) = ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))
126119, 125eqtrid 2787 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝑆↑2) + 𝑇) = ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2))
127126breq2d 5160 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
12829ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝐷 ∈ (Met‘𝑋))
1297ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝐴𝑋)
13043adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 𝑦𝑋)
131 metcl 24358 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) ∈ ℝ)
132128, 129, 130, 131syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) ∈ ℝ)
133 metge0 24371 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑦𝑋) → 0 ≤ (𝐴𝐷𝑦))
134128, 129, 130, 133syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 0 ≤ (𝐴𝐷𝑦))
13599ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → 0 ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
136132, 122, 134, 135le2sqd 14293 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((((𝐴𝐷𝑃) + 𝑆) / 2)↑2)))
137127, 136bitr4d 282 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷𝑃)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇) ↔ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
138137rabbidva 3440 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} = {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
13942adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑌𝑋)
140 rabss2 4088 . . . . . . . . . . . . . . . . 17 (𝑌𝑋 → {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
141139, 140syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
142138, 141eqsstrd 4034 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
143 filss 23877 . . . . . . . . . . . . . . 15 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ ({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ∈ (𝑋filGen𝐹) ∧ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ⊆ 𝑋 ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑇)} ⊆ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹))
14460, 116, 118, 142, 143syl13anc 1371 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹))
145 flimclsi 24002 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (𝑋filGen𝐹) → (𝐽 fLim (𝑋filGen𝐹)) ⊆ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
146144, 145syl 17 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐽 fLim (𝑋filGen𝐹)) ⊆ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
14714elin1d 4214 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ (𝐽 fLim (𝑋filGen𝐹)))
148147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ (𝐽 fLim (𝑋filGen𝐹)))
149146, 148sseldd 3996 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}))
150 ngpxms 24630 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ NrmGrp → 𝑈 ∈ ∞MetSp)
1511, 11xmsxmet 24482 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
15221, 150, 1513syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (∞Met‘𝑋))
153152adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐷 ∈ (∞Met‘𝑋))
1547adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐴𝑋)
15565adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ)
156155rexrd 11309 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ*)
157 eqid 2735 . . . . . . . . . . . . . . . 16 (MetOpen‘𝐷) = (MetOpen‘𝐷)
158 eqid 2735 . . . . . . . . . . . . . . . 16 {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}
159157, 158blcld 24534 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ (((𝐴𝐷𝑃) + 𝑆) / 2) ∈ ℝ*) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘(MetOpen‘𝐷)))
160153, 154, 156, 159syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘(MetOpen‘𝐷)))
1618, 1, 11xmstopn 24477 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
16221, 150, 1613syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐽 = (MetOpen‘𝐷))
163162adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝐽 = (MetOpen‘𝐷))
164163fveq2d 6911 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘𝐷)))
165160, 164eleqtrrd 2842 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷𝑃)) → {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘𝐽))
166 cldcls 23066 . . . . . . . . . . . . 13 ({𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
167165, 166syl 17 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷𝑃)) → ((cls‘𝐽)‘{𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)}) = {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
168149, 167eleqtrd 2841 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷𝑃)) → 𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)})
169 oveq2 7439 . . . . . . . . . . . . . 14 (𝑦 = 𝑃 → (𝐴𝐷𝑦) = (𝐴𝐷𝑃))
170169breq1d 5158 . . . . . . . . . . . . 13 (𝑦 = 𝑃 → ((𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
171170elrab 3695 . . . . . . . . . . . 12 (𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} ↔ (𝑃𝑋 ∧ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
172171simprbi 496 . . . . . . . . . . 11 (𝑃 ∈ {𝑦𝑋 ∣ (𝐴𝐷𝑦) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)} → (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
173168, 172syl 17 . . . . . . . . . 10 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2))
17431, 33, 31leadd2d 11856 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐷𝑃) ≤ 𝑆 ↔ ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆)))
17531recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐷𝑃) ∈ ℂ)
1761752timesd 12507 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴𝐷𝑃)) = ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)))
177176breq1d 5158 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ ((𝐴𝐷𝑃) + (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆)))
178 lemuldiv2 12147 . . . . . . . . . . . . . 14 (((𝐴𝐷𝑃) ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
17976, 178mp3an3 1449 . . . . . . . . . . . . 13 (((𝐴𝐷𝑃) ∈ ℝ ∧ ((𝐴𝐷𝑃) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
18031, 64, 179syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷𝑃)) ≤ ((𝐴𝐷𝑃) + 𝑆) ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
181174, 177, 1803bitr2d 307 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐷𝑃) ≤ 𝑆 ↔ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)))
182181biimpar 477 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐷𝑃) ≤ (((𝐴𝐷𝑃) + 𝑆) / 2)) → (𝐴𝐷𝑃) ≤ 𝑆)
183173, 182syldan 591 . . . . . . . . 9 ((𝜑𝑆 < (𝐴𝐷𝑃)) → (𝐴𝐷𝑃) ≤ 𝑆)
184183ex 412 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷𝑃) → (𝐴𝐷𝑃) ≤ 𝑆))
18548, 184sylbird 260 . . . . . . 7 (𝜑 → (¬ (𝐴𝐷𝑃) ≤ 𝑆 → (𝐴𝐷𝑃) ≤ 𝑆))
186185pm2.18d 127 . . . . . 6 (𝜑 → (𝐴𝐷𝑃) ≤ 𝑆)
187186adantr 480 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ≤ 𝑆)
18883adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑅 ⊆ ℝ)
18989adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
190 simpr 484 . . . . . . . . 9 ((𝜑𝑦𝑌) → 𝑦𝑌)
191 fvex 6920 . . . . . . . . 9 (𝑁‘(𝐴 𝑦)) ∈ V
192 eqid 2735 . . . . . . . . . 10 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
193192elrnmpt1 5974 . . . . . . . . 9 ((𝑦𝑌 ∧ (𝑁‘(𝐴 𝑦)) ∈ V) → (𝑁‘(𝐴 𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))))
194190, 191, 193sylancl 586 . . . . . . . 8 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))))
195194, 9eleqtrrdi 2850 . . . . . . 7 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑦)) ∈ 𝑅)
196 infrelb 12251 . . . . . . 7 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴 𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 𝑦)))
197188, 189, 195, 196syl3anc 1370 . . . . . 6 ((𝜑𝑦𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴 𝑦)))
19810, 197eqbrtrid 5183 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ≤ (𝑁‘(𝐴 𝑦)))
19932, 34, 47, 187, 198letrd 11416 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷𝑃) ≤ (𝑁‘(𝐴 𝑦)))
20026, 199eqbrtrrd 5172 . . 3 ((𝜑𝑦𝑌) → (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦)))
201200ralrimiva 3144 . 2 (𝜑 → ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦)))
202 oveq2 7439 . . . . . 6 (𝑥 = 𝑃 → (𝐴 𝑥) = (𝐴 𝑃))
203202fveq2d 6911 . . . . 5 (𝑥 = 𝑃 → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 𝑃)))
204203breq1d 5158 . . . 4 (𝑥 = 𝑃 → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))))
205204ralbidv 3176 . . 3 (𝑥 = 𝑃 → (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))))
206205rspcev 3622 . 2 ((𝑃𝑌 ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑃)) ≤ (𝑁‘(𝐴 𝑦))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
20715, 201, 206syl2anc 584 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  cmpt 5231   × cxp 5687  ran crn 5690  cres 5691  cfv 6563  (class class class)co 7431  infcinf 9479  cr 11152  0cc0 11153   + caddc 11156   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  +crp 13032  cexp 14099  Basecbs 17245  s cress 17274  distcds 17307  TopOpenctopn 17468  -gcsg 18966  LModclmod 20875  LSubSpclss 20947  ∞Metcxmet 21367  Metcmet 21368  fBascfbas 21370  filGencfg 21371  MetOpencmopn 21372  Clsdccld 23040  clsccl 23042  Filcfil 23869   fLim cflim 23958  ∞MetSpcxms 24343  MetSpcms 24344  normcnm 24605  NrmGrpcngp 24606  ℂPreHilccph 25214  CMetSpccms 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-0g 17488  df-topgen 17490  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrg 20587  df-drng 20748  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-phl 21662  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-haus 23339  df-fil 23870  df-flim 23963  df-xms 24346  df-ms 24347  df-nm 24611  df-ngp 24612  df-nlm 24615  df-clm 25110  df-cph 25216  df-cfil 25303  df-cmet 25305  df-cms 25383
This theorem is referenced by:  minveclem5  25481
  Copyright terms: Public domain W3C validator