| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝐽 ∈ Haus) | 
| 2 |  | simprll 779 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝐽 fLim 𝐹)) | 
| 3 |  | eqid 2737 | . . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 4 | 3 | flimelbas 23976 | . . . . . . . . . 10
⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ∪ 𝐽) | 
| 5 | 2, 4 | syl 17 | . . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ ∪ 𝐽) | 
| 6 |  | simprlr 780 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ (𝐽 fLim 𝐹)) | 
| 7 | 3 | flimelbas 23976 | . . . . . . . . . 10
⊢ (𝑦 ∈ (𝐽 fLim 𝐹) → 𝑦 ∈ ∪ 𝐽) | 
| 8 | 6, 7 | syl 17 | . . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ ∪ 𝐽) | 
| 9 |  | simprr 773 | . . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | 
| 10 | 3 | hausnei 23336 | . . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) | 
| 11 | 1, 5, 8, 9, 10 | syl13anc 1374 | . . . . . . . 8
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) | 
| 12 |  | df-3an 1089 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) ↔ ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅)) | 
| 13 |  | simprl 771 | . . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) | 
| 14 |  | hausflimlem 23987 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → (𝑢 ∩ 𝑣) ≠ ∅) | 
| 15 | 14 | 3expa 1119 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → (𝑢 ∩ 𝑣) ≠ ∅) | 
| 16 | 13, 15 | sylanl1 680 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → (𝑢 ∩ 𝑣) ≠ ∅) | 
| 17 | 16 | a1d 25 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → (𝑥 ≠ 𝑦 → (𝑢 ∩ 𝑣) ≠ ∅)) | 
| 18 | 17 | necon4d 2964 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → ((𝑢 ∩ 𝑣) = ∅ → 𝑥 = 𝑦)) | 
| 19 | 18 | expimpd 453 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) → (((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 = 𝑦)) | 
| 20 | 12, 19 | biimtrid 242 | . . . . . . . . 9
⊢ (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 = 𝑦)) | 
| 21 | 20 | rexlimdvva 3213 | . . . . . . . 8
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → (∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 = 𝑦)) | 
| 22 | 11, 21 | mpd 15 | . . . . . . 7
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑥 = 𝑦) | 
| 23 | 22 | expr 456 | . . . . . 6
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (𝑥 ≠ 𝑦 → 𝑥 = 𝑦)) | 
| 24 | 23 | necon1bd 2958 | . . . . 5
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (¬ 𝑥 = 𝑦 → 𝑥 = 𝑦)) | 
| 25 | 24 | pm2.18d 127 | . . . 4
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → 𝑥 = 𝑦) | 
| 26 | 25 | ex 412 | . . 3
⊢ (𝐽 ∈ Haus → ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦)) | 
| 27 | 26 | alrimivv 1928 | . 2
⊢ (𝐽 ∈ Haus →
∀𝑥∀𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦)) | 
| 28 |  | eleq1w 2824 | . . 3
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ 𝑦 ∈ (𝐽 fLim 𝐹))) | 
| 29 | 28 | mo4 2566 | . 2
⊢
(∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑥∀𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦)) | 
| 30 | 27, 29 | sylibr 234 | 1
⊢ (𝐽 ∈ Haus →
∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹)) |