MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimi Structured version   Visualization version   GIF version

Theorem hausflimi 22580
Description: One direction of hausflim 22581. A filter in a Hausdorff space has at most one limit. (Contributed by FL, 14-Nov-2010.) (Revised by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimi (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽

Proof of Theorem hausflimi
Dummy variables 𝑣 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝐽 ∈ Haus)
2 simprll 777 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝐽 fLim 𝐹))
3 eqid 2819 . . . . . . . . . . 11 𝐽 = 𝐽
43flimelbas 22568 . . . . . . . . . 10 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 𝐽)
52, 4syl 17 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 𝐽)
6 simprlr 778 . . . . . . . . . 10 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑦 ∈ (𝐽 fLim 𝐹))
73flimelbas 22568 . . . . . . . . . 10 (𝑦 ∈ (𝐽 fLim 𝐹) → 𝑦 𝐽)
86, 7syl 17 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑦 𝐽)
9 simprr 771 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥𝑦)
103hausnei 21928 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
111, 5, 8, 9, 10syl13anc 1367 . . . . . . . 8 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → ∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅))
12 df-3an 1084 . . . . . . . . . 10 ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) ↔ ((𝑥𝑢𝑦𝑣) ∧ (𝑢𝑣) = ∅))
13 simprl 769 . . . . . . . . . . . . . 14 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)))
14 hausflimlem 22579 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢𝐽𝑣𝐽) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
15143expa 1113 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
1613, 15sylanl1 678 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑢𝑣) ≠ ∅)
1716a1d 25 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → (𝑥𝑦 → (𝑢𝑣) ≠ ∅))
1817necon4d 3038 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) ∧ (𝑥𝑢𝑦𝑣)) → ((𝑢𝑣) = ∅ → 𝑥 = 𝑦))
1918expimpd 456 . . . . . . . . . 10 (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) → (((𝑥𝑢𝑦𝑣) ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2012, 19syl5bi 244 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) ∧ (𝑢𝐽𝑣𝐽)) → ((𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2120rexlimdvva 3292 . . . . . . . 8 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → (∃𝑢𝐽𝑣𝐽 (𝑥𝑢𝑦𝑣 ∧ (𝑢𝑣) = ∅) → 𝑥 = 𝑦))
2211, 21mpd 15 . . . . . . 7 ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥𝑦)) → 𝑥 = 𝑦)
2322expr 459 . . . . . 6 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (𝑥𝑦𝑥 = 𝑦))
2423necon1bd 3032 . . . . 5 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (¬ 𝑥 = 𝑦𝑥 = 𝑦))
2524pm2.18d 127 . . . 4 ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → 𝑥 = 𝑦)
2625ex 415 . . 3 (𝐽 ∈ Haus → ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
2726alrimivv 1923 . 2 (𝐽 ∈ Haus → ∀𝑥𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
28 eleq1w 2893 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ 𝑦 ∈ (𝐽 fLim 𝐹)))
2928mo4 2644 . 2 (∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦))
3027, 29sylibr 236 1 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082  wal 1529   = wceq 1531  wcel 2108  ∃*wmo 2614  wne 3014  wrex 3137  cin 3933  c0 4289   cuni 4830  (class class class)co 7148  Hauscha 21908   fLim cflim 22534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-fbas 20534  df-top 21494  df-nei 21698  df-haus 21915  df-fil 22446  df-flim 22539
This theorem is referenced by:  hausflim  22581  hausflf  22597  metsscmetcld  23910  minveclem4a  24025
  Copyright terms: Public domain W3C validator