Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝐽 ∈ Haus) |
2 | | simprll 775 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
3 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
4 | 3 | flimelbas 23027 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ∪ 𝐽) |
5 | 2, 4 | syl 17 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ ∪ 𝐽) |
6 | | simprlr 776 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ (𝐽 fLim 𝐹)) |
7 | 3 | flimelbas 23027 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐽 fLim 𝐹) → 𝑦 ∈ ∪ 𝐽) |
8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ ∪ 𝐽) |
9 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) |
10 | 3 | hausnei 22387 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ ∪ 𝐽
∧ 𝑦 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
11 | 1, 5, 8, 9, 10 | syl13anc 1370 |
. . . . . . . 8
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
12 | | df-3an 1087 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) ↔ ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅)) |
13 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) |
14 | | hausflimlem 23038 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → (𝑢 ∩ 𝑣) ≠ ∅) |
15 | 14 | 3expa 1116 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → (𝑢 ∩ 𝑣) ≠ ∅) |
16 | 13, 15 | sylanl1 676 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → (𝑢 ∩ 𝑣) ≠ ∅) |
17 | 16 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → (𝑥 ≠ 𝑦 → (𝑢 ∩ 𝑣) ≠ ∅)) |
18 | 17 | necon4d 2966 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣)) → ((𝑢 ∩ 𝑣) = ∅ → 𝑥 = 𝑦)) |
19 | 18 | expimpd 453 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) → (((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 = 𝑦)) |
20 | 12, 19 | syl5bi 241 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 = 𝑦)) |
21 | 20 | rexlimdvva 3222 |
. . . . . . . 8
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → (∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 = 𝑦)) |
22 | 11, 21 | mpd 15 |
. . . . . . 7
⊢ ((𝐽 ∈ Haus ∧ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ≠ 𝑦)) → 𝑥 = 𝑦) |
23 | 22 | expr 456 |
. . . . . 6
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (𝑥 ≠ 𝑦 → 𝑥 = 𝑦)) |
24 | 23 | necon1bd 2960 |
. . . . 5
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → (¬ 𝑥 = 𝑦 → 𝑥 = 𝑦)) |
25 | 24 | pm2.18d 127 |
. . . 4
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹))) → 𝑥 = 𝑦) |
26 | 25 | ex 412 |
. . 3
⊢ (𝐽 ∈ Haus → ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦)) |
27 | 26 | alrimivv 1932 |
. 2
⊢ (𝐽 ∈ Haus →
∀𝑥∀𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦)) |
28 | | eleq1w 2821 |
. . 3
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ 𝑦 ∈ (𝐽 fLim 𝐹))) |
29 | 28 | mo4 2566 |
. 2
⊢
(∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑥∀𝑦((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ (𝐽 fLim 𝐹)) → 𝑥 = 𝑦)) |
30 | 27, 29 | sylibr 233 |
1
⊢ (𝐽 ∈ Haus →
∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹)) |