| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqeqd | Structured version Visualization version GIF version | ||
| Description: A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| sqeqd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sqeqd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| sqeqd.3 | ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) |
| sqeqd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
| sqeqd.5 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) |
| sqeqd.6 | ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqeqd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqeqd.3 | . . . . 5 ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) | |
| 2 | sqeqd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | sqeqd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | sqeqor 14130 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
| 6 | 1, 5 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
| 7 | 6 | ord 864 | . . 3 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐴 = -𝐵)) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝜑) | |
| 9 | fveq2 6831 | . . . . . . 7 ⊢ (𝐴 = -𝐵 → (ℜ‘𝐴) = (ℜ‘-𝐵)) | |
| 10 | reneg 15039 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵)) | |
| 11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℜ‘-𝐵) = -(ℜ‘𝐵)) |
| 12 | 9, 11 | sylan9eqr 2790 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐴) = -(ℜ‘𝐵)) |
| 13 | sqeqd.4 | . . . . . . . . . . . 12 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
| 14 | 13 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐴)) |
| 15 | 14, 12 | breqtrd 5121 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ -(ℜ‘𝐵)) |
| 16 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝐵 ∈ ℂ) |
| 17 | recl 15024 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
| 18 | 16, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) ∈ ℝ) |
| 19 | 18 | le0neg1d 11699 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → ((ℜ‘𝐵) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐵))) |
| 20 | 15, 19 | mpbird 257 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) ≤ 0) |
| 21 | sqeqd.5 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) | |
| 22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐵)) |
| 23 | 0re 11125 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 24 | letri3 11209 | . . . . . . . . . 10 ⊢ (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵)))) | |
| 25 | 18, 23, 24 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵)))) |
| 26 | 20, 22, 25 | mpbir2and 713 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) = 0) |
| 27 | 26 | negeqd 11365 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → -(ℜ‘𝐵) = -0) |
| 28 | neg0 11418 | . . . . . . 7 ⊢ -0 = 0 | |
| 29 | 27, 28 | eqtrdi 2784 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → -(ℜ‘𝐵) = 0) |
| 30 | 12, 29 | eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐴) = 0) |
| 31 | sqeqd.6 | . . . . 5 ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) | |
| 32 | 8, 30, 26, 31 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝐴 = 𝐵) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 = -𝐵 → 𝐴 = 𝐵)) |
| 34 | 7, 33 | syld 47 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐴 = 𝐵)) |
| 35 | 34 | pm2.18d 127 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 0cc0 11017 ≤ cle 11158 -cneg 11356 2c2 12191 ↑cexp 13975 ℜcre 15011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |