![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqeqd | Structured version Visualization version GIF version |
Description: A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.) |
Ref | Expression |
---|---|
sqeqd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
sqeqd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
sqeqd.3 | ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) |
sqeqd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
sqeqd.5 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) |
sqeqd.6 | ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sqeqd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqeqd.3 | . . . . 5 ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) | |
2 | sqeqd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | sqeqd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | sqeqor 14177 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) | |
5 | 2, 3, 4 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
6 | 1, 5 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
7 | 6 | ord 863 | . . 3 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐴 = -𝐵)) |
8 | simpl 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝜑) | |
9 | fveq2 6889 | . . . . . . 7 ⊢ (𝐴 = -𝐵 → (ℜ‘𝐴) = (ℜ‘-𝐵)) | |
10 | reneg 15069 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵)) | |
11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℜ‘-𝐵) = -(ℜ‘𝐵)) |
12 | 9, 11 | sylan9eqr 2795 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐴) = -(ℜ‘𝐵)) |
13 | sqeqd.4 | . . . . . . . . . . . 12 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
14 | 13 | adantr 482 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐴)) |
15 | 14, 12 | breqtrd 5174 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ -(ℜ‘𝐵)) |
16 | 3 | adantr 482 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝐵 ∈ ℂ) |
17 | recl 15054 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
18 | 16, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) ∈ ℝ) |
19 | 18 | le0neg1d 11782 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → ((ℜ‘𝐵) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐵))) |
20 | 15, 19 | mpbird 257 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) ≤ 0) |
21 | sqeqd.5 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) | |
22 | 21 | adantr 482 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐵)) |
23 | 0re 11213 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
24 | letri3 11296 | . . . . . . . . . 10 ⊢ (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵)))) | |
25 | 18, 23, 24 | sylancl 587 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵)))) |
26 | 20, 22, 25 | mpbir2and 712 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) = 0) |
27 | 26 | negeqd 11451 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → -(ℜ‘𝐵) = -0) |
28 | neg0 11503 | . . . . . . 7 ⊢ -0 = 0 | |
29 | 27, 28 | eqtrdi 2789 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → -(ℜ‘𝐵) = 0) |
30 | 12, 29 | eqtrd 2773 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐴) = 0) |
31 | sqeqd.6 | . . . . 5 ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) | |
32 | 8, 30, 26, 31 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝐴 = 𝐵) |
33 | 32 | ex 414 | . . 3 ⊢ (𝜑 → (𝐴 = -𝐵 → 𝐴 = 𝐵)) |
34 | 7, 33 | syld 47 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐴 = 𝐵)) |
35 | 34 | pm2.18d 127 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5148 ‘cfv 6541 (class class class)co 7406 ℂcc 11105 ℝcr 11106 0cc0 11107 ≤ cle 11246 -cneg 11442 2c2 12264 ↑cexp 14024 ℜcre 15041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-n0 12470 df-z 12556 df-uz 12820 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |