MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqd Structured version   Visualization version   GIF version

Theorem sqeqd 14516
Description: A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.)
Hypotheses
Ref Expression
sqeqd.1 (𝜑𝐴 ∈ ℂ)
sqeqd.2 (𝜑𝐵 ∈ ℂ)
sqeqd.3 (𝜑 → (𝐴↑2) = (𝐵↑2))
sqeqd.4 (𝜑 → 0 ≤ (ℜ‘𝐴))
sqeqd.5 (𝜑 → 0 ≤ (ℜ‘𝐵))
sqeqd.6 ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵)
Assertion
Ref Expression
sqeqd (𝜑𝐴 = 𝐵)

Proof of Theorem sqeqd
StepHypRef Expression
1 sqeqd.3 . . . . 5 (𝜑 → (𝐴↑2) = (𝐵↑2))
2 sqeqd.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3 sqeqd.2 . . . . . 6 (𝜑𝐵 ∈ ℂ)
4 sqeqor 13574 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
52, 3, 4syl2anc 587 . . . . 5 (𝜑 → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
61, 5mpbid 235 . . . 4 (𝜑 → (𝐴 = 𝐵𝐴 = -𝐵))
76ord 861 . . 3 (𝜑 → (¬ 𝐴 = 𝐵𝐴 = -𝐵))
8 simpl 486 . . . . 5 ((𝜑𝐴 = -𝐵) → 𝜑)
9 fveq2 6652 . . . . . . 7 (𝐴 = -𝐵 → (ℜ‘𝐴) = (ℜ‘-𝐵))
10 reneg 14475 . . . . . . . 8 (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵))
113, 10syl 17 . . . . . . 7 (𝜑 → (ℜ‘-𝐵) = -(ℜ‘𝐵))
129, 11sylan9eqr 2879 . . . . . 6 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐴) = -(ℜ‘𝐵))
13 sqeqd.4 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (ℜ‘𝐴))
1413adantr 484 . . . . . . . . . . 11 ((𝜑𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐴))
1514, 12breqtrd 5068 . . . . . . . . . 10 ((𝜑𝐴 = -𝐵) → 0 ≤ -(ℜ‘𝐵))
163adantr 484 . . . . . . . . . . . 12 ((𝜑𝐴 = -𝐵) → 𝐵 ∈ ℂ)
17 recl 14460 . . . . . . . . . . . 12 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1816, 17syl 17 . . . . . . . . . . 11 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐵) ∈ ℝ)
1918le0neg1d 11200 . . . . . . . . . 10 ((𝜑𝐴 = -𝐵) → ((ℜ‘𝐵) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐵)))
2015, 19mpbird 260 . . . . . . . . 9 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐵) ≤ 0)
21 sqeqd.5 . . . . . . . . . 10 (𝜑 → 0 ≤ (ℜ‘𝐵))
2221adantr 484 . . . . . . . . 9 ((𝜑𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐵))
23 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
24 letri3 10715 . . . . . . . . . 10 (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵))))
2518, 23, 24sylancl 589 . . . . . . . . 9 ((𝜑𝐴 = -𝐵) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵))))
2620, 22, 25mpbir2and 712 . . . . . . . 8 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐵) = 0)
2726negeqd 10869 . . . . . . 7 ((𝜑𝐴 = -𝐵) → -(ℜ‘𝐵) = -0)
28 neg0 10921 . . . . . . 7 -0 = 0
2927, 28syl6eq 2873 . . . . . 6 ((𝜑𝐴 = -𝐵) → -(ℜ‘𝐵) = 0)
3012, 29eqtrd 2857 . . . . 5 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐴) = 0)
31 sqeqd.6 . . . . 5 ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵)
328, 30, 26, 31syl3anc 1368 . . . 4 ((𝜑𝐴 = -𝐵) → 𝐴 = 𝐵)
3332ex 416 . . 3 (𝜑 → (𝐴 = -𝐵𝐴 = 𝐵))
347, 33syld 47 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐴 = 𝐵))
3534pm2.18d 127 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2114   class class class wbr 5042  cfv 6334  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  cle 10665  -cneg 10860  2c2 11680  cexp 13425  cre 14447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator