| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqeqd | Structured version Visualization version GIF version | ||
| Description: A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| sqeqd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sqeqd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| sqeqd.3 | ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) |
| sqeqd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
| sqeqd.5 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) |
| sqeqd.6 | ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqeqd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqeqd.3 | . . . . 5 ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) | |
| 2 | sqeqd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | sqeqd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | sqeqor 14181 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
| 6 | 1, 5 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
| 7 | 6 | ord 864 | . . 3 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐴 = -𝐵)) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝜑) | |
| 9 | fveq2 6858 | . . . . . . 7 ⊢ (𝐴 = -𝐵 → (ℜ‘𝐴) = (ℜ‘-𝐵)) | |
| 10 | reneg 15091 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵)) | |
| 11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℜ‘-𝐵) = -(ℜ‘𝐵)) |
| 12 | 9, 11 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐴) = -(ℜ‘𝐵)) |
| 13 | sqeqd.4 | . . . . . . . . . . . 12 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
| 14 | 13 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐴)) |
| 15 | 14, 12 | breqtrd 5133 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ -(ℜ‘𝐵)) |
| 16 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝐵 ∈ ℂ) |
| 17 | recl 15076 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
| 18 | 16, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) ∈ ℝ) |
| 19 | 18 | le0neg1d 11749 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → ((ℜ‘𝐵) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐵))) |
| 20 | 15, 19 | mpbird 257 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) ≤ 0) |
| 21 | sqeqd.5 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) | |
| 22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐵)) |
| 23 | 0re 11176 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 24 | letri3 11259 | . . . . . . . . . 10 ⊢ (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵)))) | |
| 25 | 18, 23, 24 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵)))) |
| 26 | 20, 22, 25 | mpbir2and 713 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) = 0) |
| 27 | 26 | negeqd 11415 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → -(ℜ‘𝐵) = -0) |
| 28 | neg0 11468 | . . . . . . 7 ⊢ -0 = 0 | |
| 29 | 27, 28 | eqtrdi 2780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → -(ℜ‘𝐵) = 0) |
| 30 | 12, 29 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐴) = 0) |
| 31 | sqeqd.6 | . . . . 5 ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) | |
| 32 | 8, 30, 26, 31 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝐴 = 𝐵) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 = -𝐵 → 𝐴 = 𝐵)) |
| 34 | 7, 33 | syld 47 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐴 = 𝐵)) |
| 35 | 34 | pm2.18d 127 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 ≤ cle 11209 -cneg 11406 2c2 12241 ↑cexp 14026 ℜcre 15063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |