| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqeqd | Structured version Visualization version GIF version | ||
| Description: A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| sqeqd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sqeqd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| sqeqd.3 | ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) |
| sqeqd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
| sqeqd.5 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) |
| sqeqd.6 | ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sqeqd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqeqd.3 | . . . . 5 ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) | |
| 2 | sqeqd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | sqeqd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | sqeqor 14239 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) |
| 6 | 1, 5 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
| 7 | 6 | ord 864 | . . 3 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐴 = -𝐵)) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝜑) | |
| 9 | fveq2 6881 | . . . . . . 7 ⊢ (𝐴 = -𝐵 → (ℜ‘𝐴) = (ℜ‘-𝐵)) | |
| 10 | reneg 15149 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵)) | |
| 11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (ℜ‘-𝐵) = -(ℜ‘𝐵)) |
| 12 | 9, 11 | sylan9eqr 2793 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐴) = -(ℜ‘𝐵)) |
| 13 | sqeqd.4 | . . . . . . . . . . . 12 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
| 14 | 13 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐴)) |
| 15 | 14, 12 | breqtrd 5150 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ -(ℜ‘𝐵)) |
| 16 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝐵 ∈ ℂ) |
| 17 | recl 15134 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
| 18 | 16, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) ∈ ℝ) |
| 19 | 18 | le0neg1d 11813 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → ((ℜ‘𝐵) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐵))) |
| 20 | 15, 19 | mpbird 257 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) ≤ 0) |
| 21 | sqeqd.5 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) | |
| 22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐵)) |
| 23 | 0re 11242 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 24 | letri3 11325 | . . . . . . . . . 10 ⊢ (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵)))) | |
| 25 | 18, 23, 24 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵)))) |
| 26 | 20, 22, 25 | mpbir2and 713 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐵) = 0) |
| 27 | 26 | negeqd 11481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → -(ℜ‘𝐵) = -0) |
| 28 | neg0 11534 | . . . . . . 7 ⊢ -0 = 0 | |
| 29 | 27, 28 | eqtrdi 2787 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → -(ℜ‘𝐵) = 0) |
| 30 | 12, 29 | eqtrd 2771 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → (ℜ‘𝐴) = 0) |
| 31 | sqeqd.6 | . . . . 5 ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) | |
| 32 | 8, 30, 26, 31 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = -𝐵) → 𝐴 = 𝐵) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 = -𝐵 → 𝐴 = 𝐵)) |
| 34 | 7, 33 | syld 47 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐴 = 𝐵)) |
| 35 | 34 | pm2.18d 127 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 ≤ cle 11275 -cneg 11472 2c2 12300 ↑cexp 14084 ℜcre 15121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |