| Step | Hyp | Ref
| Expression |
| 1 | | minveco.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈
CPreHilOLD) |
| 2 | | phnv 30800 |
. . . . . 6
⊢ (𝑈 ∈ CPreHilOLD
→ 𝑈 ∈
NrmCVec) |
| 3 | | minveco.x |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
| 4 | | minveco.d |
. . . . . . 7
⊢ 𝐷 = (IndMet‘𝑈) |
| 5 | 3, 4 | imsxmet 30678 |
. . . . . 6
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | 1, 2, 5 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 7 | | minveco.j |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
| 8 | 7 | methaus 24464 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
| 9 | | lmfun 23324 |
. . . . 5
⊢ (𝐽 ∈ Haus → Fun
(⇝𝑡‘𝐽)) |
| 10 | 6, 8, 9 | 3syl 18 |
. . . 4
⊢ (𝜑 → Fun
(⇝𝑡‘𝐽)) |
| 11 | | minveco.m |
. . . . . 6
⊢ 𝑀 = ( −𝑣
‘𝑈) |
| 12 | | minveco.n |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
| 13 | | minveco.y |
. . . . . 6
⊢ 𝑌 = (BaseSet‘𝑊) |
| 14 | | minveco.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| 15 | | minveco.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 16 | | minveco.r |
. . . . . 6
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 17 | | minveco.s |
. . . . . 6
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| 18 | | minveco.f |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
| 19 | | minveco.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| 20 | 3, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19 | minvecolem4a 30863 |
. . . . 5
⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
| 21 | | eqid 2736 |
. . . . . . 7
⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) |
| 22 | | nnuz 12900 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 23 | 13 | fvexi 6895 |
. . . . . . . 8
⊢ 𝑌 ∈ V |
| 24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ V) |
| 25 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
| 26 | 7 | mopntop 24384 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 27 | 25, 5, 26 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
| 28 | | elin 3947 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
| 29 | 14, 28 | sylib 218 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
| 30 | 29 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
| 31 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(SubSp‘𝑈) =
(SubSp‘𝑈) |
| 32 | 3, 13, 31 | sspba 30713 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
| 33 | 25, 30, 32 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 34 | | xmetres2 24305 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
| 35 | 6, 33, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
| 36 | | eqid 2736 |
. . . . . . . . . 10
⊢
(MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) |
| 37 | 36 | mopntopon 24383 |
. . . . . . . . 9
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌)) |
| 38 | 35, 37 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌)) |
| 39 | | lmcl 23240 |
. . . . . . . 8
⊢
(((MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) →
((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌) |
| 40 | 38, 20, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 →
((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌) |
| 41 | | 1zzd 12628 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
| 42 | 21, 22, 24, 27, 40, 41, 18 | lmss 23241 |
. . . . . 6
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽 ↾t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
| 43 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) |
| 44 | 43, 7, 36 | metrest 24468 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 45 | 6, 33, 44 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 46 | 45 | fveq2d 6885 |
. . . . . . 7
⊢ (𝜑 →
(⇝𝑡‘(𝐽 ↾t 𝑌)) =
(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
| 47 | 46 | breqd 5135 |
. . . . . 6
⊢ (𝜑 → (𝐹(⇝𝑡‘(𝐽 ↾t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
| 48 | 42, 47 | bitrd 279 |
. . . . 5
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
| 49 | 20, 48 | mpbird 257 |
. . . 4
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
| 50 | | funbrfv 6932 |
. . . 4
⊢ (Fun
(⇝𝑡‘𝐽) → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡‘𝐽)‘𝐹) =
((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
| 51 | 10, 49, 50 | sylc 65 |
. . 3
⊢ (𝜑 →
((⇝𝑡‘𝐽)‘𝐹) =
((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
| 52 | 51, 40 | eqeltrd 2835 |
. 2
⊢ (𝜑 →
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑌) |
| 53 | 3, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19 | minvecolem4b 30864 |
. . . . . 6
⊢ (𝜑 →
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) |
| 54 | 3, 11, 12, 4 | imsdval 30672 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹)))) |
| 55 | 25, 15, 53, 54 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹)))) |
| 56 | 55 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹)))) |
| 57 | 3, 4 | imsmet 30677 |
. . . . . . . 8
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
| 58 | 1, 2, 57 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 59 | | metcl 24276 |
. . . . . . 7
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ) |
| 60 | 58, 15, 53, 59 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ) |
| 61 | 60 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ) |
| 62 | 3, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19 | minvecolem4c 30865 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 63 | 62 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑆 ∈ ℝ) |
| 64 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ NrmCVec) |
| 65 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
| 66 | 33 | sselda 3963 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
| 67 | 3, 11 | nvmcl 30632 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝑀𝑦) ∈ 𝑋) |
| 68 | 64, 65, 66, 67 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝑀𝑦) ∈ 𝑋) |
| 69 | 3, 12 | nvcl 30647 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
| 70 | 64, 68, 69 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
| 71 | 62, 60 | ltnled 11387 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ↔ ¬ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆)) |
| 72 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(ℤ≥‘((⌊‘𝑇) + 1)) =
(ℤ≥‘((⌊‘𝑇) + 1)) |
| 73 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 74 | | minveco.t |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) |
| 75 | 60, 62 | readdcld 11269 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ) |
| 76 | 75 | rehalfcld 12493 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ) |
| 77 | 76 | resqcld 14148 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈
ℝ) |
| 78 | 62 | resqcld 14148 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑆↑2) ∈ ℝ) |
| 79 | 77, 78 | resubcld 11670 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ) |
| 81 | 62, 60, 62 | ltadd1d 11835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆))) |
| 82 | 62 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 83 | 82 | 2timesd 12489 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆)) |
| 84 | 83 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆))) |
| 85 | | 2re 12319 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℝ |
| 86 | | 2pos 12348 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 <
2 |
| 87 | 85, 86 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (2 ∈ ℝ ∧ 0
< 2)) |
| 89 | | ltmuldiv2 12121 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆 ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
| 90 | 62, 75, 88, 89 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
| 91 | 81, 84, 90 | 3bitr2d 307 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
| 92 | 3, 11, 12, 13, 1, 14, 15, 4, 7, 16 | minvecolem1 30860 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 93 | 92 | simp3d 1144 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
| 94 | 92 | simp1d 1142 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑅 ⊆ ℝ) |
| 95 | 92 | simp2d 1143 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑅 ≠ ∅) |
| 96 | | 0re 11242 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
ℝ |
| 97 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
| 98 | 97 | ralbidv 3164 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 99 | 98 | rspcev 3606 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 100 | 96, 93, 99 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 101 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 ∈
ℝ) |
| 102 | | infregelb 12231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) ∧ 0 ∈ ℝ) → (0 ≤
inf(𝑅, ℝ, < )
↔ ∀𝑤 ∈
𝑅 0 ≤ 𝑤)) |
| 103 | 94, 95, 100, 101, 102 | syl31anc 1375 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔
∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 104 | 93, 103 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ≤ inf(𝑅, ℝ, <
)) |
| 105 | 104, 17 | breqtrrdi 5166 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ≤ 𝑆) |
| 106 | | metge0 24289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) → 0 ≤ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) |
| 107 | 58, 15, 53, 106 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0 ≤ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) |
| 108 | 60, 62, 107, 105 | addge0d 11818 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆)) |
| 109 | | divge0 12116 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2))
→ 0 ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
| 110 | 75, 108, 88, 109 | syl21anc 837 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
| 111 | 62, 76, 105, 110 | lt2sqd 14279 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑆 < (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2))) |
| 112 | 78, 77 | posdifd 11829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑆↑2) < ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
| 113 | 91, 111, 112 | 3bitrd 305 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ↔ 0 < (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
| 114 | 113 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 0 < (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) |
| 115 | 80, 114 | elrpd 13053 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈
ℝ+) |
| 116 | 115 | rpreccld 13066 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∈
ℝ+) |
| 117 | 74, 116 | eqeltrid 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 𝑇 ∈
ℝ+) |
| 118 | 117 | rprege0d 13063 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇)) |
| 119 | | flge0nn0 13842 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ ℝ ∧ 0 ≤
𝑇) →
(⌊‘𝑇) ∈
ℕ0) |
| 120 | | nn0p1nn 12545 |
. . . . . . . . . . . . 13
⊢
((⌊‘𝑇)
∈ ℕ0 → ((⌊‘𝑇) + 1) ∈ ℕ) |
| 121 | 118, 119,
120 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℕ) |
| 122 | 121 | nnzd 12620 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℤ) |
| 123 | 49, 51 | breqtrrd 5152 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐹)) |
| 124 | 123 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 𝐹(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐹)) |
| 125 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 𝐴 ∈ 𝑋) |
| 126 | 76 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ) |
| 127 | 126 | rexrd 11290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ∈
ℝ*) |
| 128 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝜑) |
| 129 | | eluznn 12939 |
. . . . . . . . . . . . . . . 16
⊢
((((⌊‘𝑇)
+ 1) ∈ ℕ ∧ 𝑛
∈ (ℤ≥‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ) |
| 130 | 121, 129 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ) |
| 131 | 58 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
| 132 | 15 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ 𝑋) |
| 133 | 18, 33 | fssd 6728 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| 134 | 133 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑋) |
| 135 | | metcl 24276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 136 | 131, 132,
134, 135 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 137 | 128, 130,
136 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 138 | 137 | resqcld 14148 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ∈ ℝ) |
| 139 | 62 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑆 ∈ ℝ) |
| 140 | 139 | resqcld 14148 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (𝑆↑2) ∈ ℝ) |
| 141 | 130 | nnrecred 12296 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ∈ ℝ) |
| 142 | 140, 141 | readdcld 11269 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ) |
| 143 | 77 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈
ℝ) |
| 144 | 128, 130,
19 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| 145 | 117 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑇 ∈
ℝ+) |
| 146 | 145 | rpred 13056 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑇 ∈ ℝ) |
| 147 | | reflcl 13818 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 ∈ ℝ →
(⌊‘𝑇) ∈
ℝ) |
| 148 | | peano2re 11413 |
. . . . . . . . . . . . . . . . . 18
⊢
((⌊‘𝑇)
∈ ℝ → ((⌊‘𝑇) + 1) ∈ ℝ) |
| 149 | 146, 147,
148 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ∈
ℝ) |
| 150 | 130 | nnred 12260 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℝ) |
| 151 | | fllep1 13823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 ∈ ℝ → 𝑇 ≤ ((⌊‘𝑇) + 1)) |
| 152 | 146, 151 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑇 ≤ ((⌊‘𝑇) + 1)) |
| 153 | | eluzle 12870 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1)) → ((⌊‘𝑇) + 1) ≤ 𝑛) |
| 154 | 153 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ≤ 𝑛) |
| 155 | 146, 149,
150, 152, 154 | letrd 11397 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑇 ≤ 𝑛) |
| 156 | 74, 155 | eqbrtrrid 5160 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛) |
| 157 | | 1red 11241 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 1 ∈
ℝ) |
| 158 | 79 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ) |
| 159 | 114 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 0 < (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) |
| 160 | 130 | nngt0d 12294 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 0 < 𝑛) |
| 161 | | lediv23 12139 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℝ ∧ ((((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ ∧ 0 <
(((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
| 162 | 157, 158,
159, 150, 160, 161 | syl122anc 1381 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
| 163 | 156, 162 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) |
| 164 | 140, 141,
143 | leaddsub2d 11844 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
| 165 | 163, 164 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2)) |
| 166 | 138, 142,
143, 144, 165 | letrd 11397 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2)) |
| 167 | 76 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ) |
| 168 | | metge0 24289 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → 0 ≤ (𝐴𝐷(𝐹‘𝑛))) |
| 169 | 131, 132,
134, 168 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (𝐴𝐷(𝐹‘𝑛))) |
| 170 | 128, 130,
169 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 0 ≤ (𝐴𝐷(𝐹‘𝑛))) |
| 171 | 110 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 0 ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
| 172 | 137, 167,
170, 171 | le2sqd 14280 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹‘𝑛)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ↔ ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2))) |
| 173 | 166, 172 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹‘𝑛)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
| 174 | 72, 7, 73, 122, 124, 125, 127, 173 | lmle 25258 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
| 175 | 60, 62, 60 | leadd2d 11837 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆 ↔ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆))) |
| 176 | 60 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℂ) |
| 177 | 176 | 2timesd 12489 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) = ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)))) |
| 178 | 177 | breq1d 5134 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆))) |
| 179 | | lemuldiv2 12128 |
. . . . . . . . . . . . . 14
⊢ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → ((2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
| 180 | 87, 179 | mp3an3 1452 |
. . . . . . . . . . . . 13
⊢ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
| 181 | 60, 75, 180 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
| 182 | 175, 178,
181 | 3bitr2d 307 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆 ↔ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
| 183 | 182 | biimpar 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆) |
| 184 | 174, 183 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆) |
| 185 | 184 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆)) |
| 186 | 71, 185 | sylbird 260 |
. . . . . . 7
⊢ (𝜑 → (¬ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆)) |
| 187 | 186 | pm2.18d 127 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆) |
| 188 | 187 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆) |
| 189 | 94 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑅 ⊆ ℝ) |
| 190 | 100 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 191 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
| 192 | | fvex 6894 |
. . . . . . . . 9
⊢ (𝑁‘(𝐴𝑀𝑦)) ∈ V |
| 193 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 194 | 193 | elrnmpt1 5945 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑌 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ V) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))) |
| 195 | 191, 192,
194 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))) |
| 196 | 195, 16 | eleqtrrdi 2846 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅) |
| 197 | | infrelb 12232 |
. . . . . . 7
⊢ ((𝑅 ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 198 | 189, 190,
196, 197 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 199 | 17, 198 | eqbrtrid 5159 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑆 ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 200 | 61, 63, 70, 188, 199 | letrd 11397 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 201 | 56, 200 | eqbrtrrd 5148 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 202 | 201 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 203 | | oveq2 7418 |
. . . . . 6
⊢ (𝑥 =
((⇝𝑡‘𝐽)‘𝐹) → (𝐴𝑀𝑥) = (𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) |
| 204 | 203 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 =
((⇝𝑡‘𝐽)‘𝐹) → (𝑁‘(𝐴𝑀𝑥)) = (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹)))) |
| 205 | 204 | breq1d 5134 |
. . . 4
⊢ (𝑥 =
((⇝𝑡‘𝐽)‘𝐹) → ((𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))) |
| 206 | 205 | ralbidv 3164 |
. . 3
⊢ (𝑥 =
((⇝𝑡‘𝐽)‘𝐹) → (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))) |
| 207 | 206 | rspcev 3606 |
. 2
⊢
((((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 208 | 52, 202, 207 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |