Step | Hyp | Ref
| Expression |
1 | | minveco.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈
CPreHilOLD) |
2 | | phnv 29176 |
. . . . . 6
⊢ (𝑈 ∈ CPreHilOLD
→ 𝑈 ∈
NrmCVec) |
3 | | minveco.x |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
4 | | minveco.d |
. . . . . . 7
⊢ 𝐷 = (IndMet‘𝑈) |
5 | 3, 4 | imsxmet 29054 |
. . . . . 6
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 1, 2, 5 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
7 | | minveco.j |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
8 | 7 | methaus 23676 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
9 | | lmfun 22532 |
. . . . 5
⊢ (𝐽 ∈ Haus → Fun
(⇝𝑡‘𝐽)) |
10 | 6, 8, 9 | 3syl 18 |
. . . 4
⊢ (𝜑 → Fun
(⇝𝑡‘𝐽)) |
11 | | minveco.m |
. . . . . 6
⊢ 𝑀 = ( −𝑣
‘𝑈) |
12 | | minveco.n |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
13 | | minveco.y |
. . . . . 6
⊢ 𝑌 = (BaseSet‘𝑊) |
14 | | minveco.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
15 | | minveco.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
16 | | minveco.r |
. . . . . 6
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
17 | | minveco.s |
. . . . . 6
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
18 | | minveco.f |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
19 | | minveco.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
20 | 3, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19 | minvecolem4a 29239 |
. . . . 5
⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
21 | | eqid 2738 |
. . . . . . 7
⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) |
22 | | nnuz 12621 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
23 | 13 | fvexi 6788 |
. . . . . . . 8
⊢ 𝑌 ∈ V |
24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ V) |
25 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
26 | 7 | mopntop 23593 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
27 | 25, 5, 26 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
28 | | elin 3903 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
29 | 14, 28 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
30 | 29 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
31 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(SubSp‘𝑈) =
(SubSp‘𝑈) |
32 | 3, 13, 31 | sspba 29089 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
33 | 25, 30, 32 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
34 | | xmetres2 23514 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
35 | 6, 33, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
36 | | eqid 2738 |
. . . . . . . . . 10
⊢
(MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) |
37 | 36 | mopntopon 23592 |
. . . . . . . . 9
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌)) |
38 | 35, 37 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌)) |
39 | | lmcl 22448 |
. . . . . . . 8
⊢
(((MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) →
((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌) |
40 | 38, 20, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 →
((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌) |
41 | | 1zzd 12351 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
42 | 21, 22, 24, 27, 40, 41, 18 | lmss 22449 |
. . . . . 6
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽 ↾t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
43 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) |
44 | 43, 7, 36 | metrest 23680 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
45 | 6, 33, 44 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
46 | 45 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 →
(⇝𝑡‘(𝐽 ↾t 𝑌)) =
(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
47 | 46 | breqd 5085 |
. . . . . 6
⊢ (𝜑 → (𝐹(⇝𝑡‘(𝐽 ↾t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
48 | 42, 47 | bitrd 278 |
. . . . 5
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
49 | 20, 48 | mpbird 256 |
. . . 4
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
50 | | funbrfv 6820 |
. . . 4
⊢ (Fun
(⇝𝑡‘𝐽) → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡‘𝐽)‘𝐹) =
((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
51 | 10, 49, 50 | sylc 65 |
. . 3
⊢ (𝜑 →
((⇝𝑡‘𝐽)‘𝐹) =
((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
52 | 51, 40 | eqeltrd 2839 |
. 2
⊢ (𝜑 →
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑌) |
53 | 3, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19 | minvecolem4b 29240 |
. . . . . 6
⊢ (𝜑 →
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) |
54 | 3, 11, 12, 4 | imsdval 29048 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹)))) |
55 | 25, 15, 53, 54 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹)))) |
56 | 55 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹)))) |
57 | 3, 4 | imsmet 29053 |
. . . . . . . 8
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
58 | 1, 2, 57 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
59 | | metcl 23485 |
. . . . . . 7
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ) |
60 | 58, 15, 53, 59 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ) |
61 | 60 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ) |
62 | 3, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19 | minvecolem4c 29241 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ℝ) |
63 | 62 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑆 ∈ ℝ) |
64 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ NrmCVec) |
65 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
66 | 33 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
67 | 3, 11 | nvmcl 29008 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝑀𝑦) ∈ 𝑋) |
68 | 64, 65, 66, 67 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝑀𝑦) ∈ 𝑋) |
69 | 3, 12 | nvcl 29023 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
70 | 64, 68, 69 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
71 | 62, 60 | ltnled 11122 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ↔ ¬ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆)) |
72 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(ℤ≥‘((⌊‘𝑇) + 1)) =
(ℤ≥‘((⌊‘𝑇) + 1)) |
73 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 𝐷 ∈ (∞Met‘𝑋)) |
74 | | minveco.t |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) |
75 | 60, 62 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ) |
76 | 75 | rehalfcld 12220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ) |
77 | 76 | resqcld 13965 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈
ℝ) |
78 | 62 | resqcld 13965 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑆↑2) ∈ ℝ) |
79 | 77, 78 | resubcld 11403 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ) |
80 | 79 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ) |
81 | 62, 60, 62 | ltadd1d 11568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆))) |
82 | 62 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑆 ∈ ℂ) |
83 | 82 | 2timesd 12216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆)) |
84 | 83 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆))) |
85 | | 2re 12047 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℝ |
86 | | 2pos 12076 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 <
2 |
87 | 85, 86 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (2 ∈
ℝ ∧ 0 < 2) |
88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (2 ∈ ℝ ∧ 0
< 2)) |
89 | | ltmuldiv2 11849 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆 ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
90 | 62, 75, 88, 89 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
91 | 81, 84, 90 | 3bitr2d 307 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
92 | 3, 11, 12, 13, 1, 14, 15, 4, 7, 16 | minvecolem1 29236 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
93 | 92 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
94 | 92 | simp1d 1141 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑅 ⊆ ℝ) |
95 | 92 | simp2d 1142 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑅 ≠ ∅) |
96 | | 0re 10977 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
ℝ |
97 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
98 | 97 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
99 | 98 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
100 | 96, 93, 99 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
101 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 ∈
ℝ) |
102 | | infregelb 11959 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) ∧ 0 ∈ ℝ) → (0 ≤
inf(𝑅, ℝ, < )
↔ ∀𝑤 ∈
𝑅 0 ≤ 𝑤)) |
103 | 94, 95, 100, 101, 102 | syl31anc 1372 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔
∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
104 | 93, 103 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ≤ inf(𝑅, ℝ, <
)) |
105 | 104, 17 | breqtrrdi 5116 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ≤ 𝑆) |
106 | | metge0 23498 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧
((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) → 0 ≤ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) |
107 | 58, 15, 53, 106 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0 ≤ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) |
108 | 60, 62, 107, 105 | addge0d 11551 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆)) |
109 | | divge0 11844 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2))
→ 0 ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
110 | 75, 108, 88, 109 | syl21anc 835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
111 | 62, 76, 105, 110 | lt2sqd 13973 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑆 < (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2))) |
112 | 78, 77 | posdifd 11562 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑆↑2) < ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
113 | 91, 111, 112 | 3bitrd 305 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ↔ 0 < (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
114 | 113 | biimpa 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 0 < (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) |
115 | 80, 114 | elrpd 12769 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈
ℝ+) |
116 | 115 | rpreccld 12782 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∈
ℝ+) |
117 | 74, 116 | eqeltrid 2843 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 𝑇 ∈
ℝ+) |
118 | 117 | rprege0d 12779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇)) |
119 | | flge0nn0 13540 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ ℝ ∧ 0 ≤
𝑇) →
(⌊‘𝑇) ∈
ℕ0) |
120 | | nn0p1nn 12272 |
. . . . . . . . . . . . 13
⊢
((⌊‘𝑇)
∈ ℕ0 → ((⌊‘𝑇) + 1) ∈ ℕ) |
121 | 118, 119,
120 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℕ) |
122 | 121 | nnzd 12425 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℤ) |
123 | 49, 51 | breqtrrd 5102 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐹)) |
124 | 123 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 𝐹(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐹)) |
125 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → 𝐴 ∈ 𝑋) |
126 | 76 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ) |
127 | 126 | rexrd 11025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ∈
ℝ*) |
128 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝜑) |
129 | | eluznn 12658 |
. . . . . . . . . . . . . . . 16
⊢
((((⌊‘𝑇)
+ 1) ∈ ℕ ∧ 𝑛
∈ (ℤ≥‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ) |
130 | 121, 129 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ) |
131 | 58 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
132 | 15 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ 𝑋) |
133 | 18, 33 | fssd 6618 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
134 | 133 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑋) |
135 | | metcl 23485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
136 | 131, 132,
134, 135 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
137 | 128, 130,
136 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹‘𝑛)) ∈ ℝ) |
138 | 137 | resqcld 13965 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ∈ ℝ) |
139 | 62 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑆 ∈ ℝ) |
140 | 139 | resqcld 13965 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (𝑆↑2) ∈ ℝ) |
141 | 130 | nnrecred 12024 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ∈ ℝ) |
142 | 140, 141 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ) |
143 | 77 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈
ℝ) |
144 | 128, 130,
19 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
145 | 117 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑇 ∈
ℝ+) |
146 | 145 | rpred 12772 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑇 ∈ ℝ) |
147 | | reflcl 13516 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 ∈ ℝ →
(⌊‘𝑇) ∈
ℝ) |
148 | | peano2re 11148 |
. . . . . . . . . . . . . . . . . 18
⊢
((⌊‘𝑇)
∈ ℝ → ((⌊‘𝑇) + 1) ∈ ℝ) |
149 | 146, 147,
148 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ∈
ℝ) |
150 | 130 | nnred 11988 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℝ) |
151 | | fllep1 13521 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 ∈ ℝ → 𝑇 ≤ ((⌊‘𝑇) + 1)) |
152 | 146, 151 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑇 ≤ ((⌊‘𝑇) + 1)) |
153 | | eluzle 12595 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1)) → ((⌊‘𝑇) + 1) ≤ 𝑛) |
154 | 153 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ≤ 𝑛) |
155 | 146, 149,
150, 152, 154 | letrd 11132 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 𝑇 ≤ 𝑛) |
156 | 74, 155 | eqbrtrrid 5110 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛) |
157 | | 1red 10976 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 1 ∈
ℝ) |
158 | 79 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ) |
159 | 114 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 0 < (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) |
160 | 130 | nngt0d 12022 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 0 < 𝑛) |
161 | | lediv23 11867 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℝ ∧ ((((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ ∧ 0 <
(((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
162 | 157, 158,
159, 150, 160, 161 | syl122anc 1378 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
163 | 156, 162 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) |
164 | 140, 141,
143 | leaddsub2d 11577 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))) |
165 | 163, 164 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2)) |
166 | 138, 142,
143, 144, 165 | letrd 11132 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2)) |
167 | 76 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ) |
168 | | metge0 23498 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → 0 ≤ (𝐴𝐷(𝐹‘𝑛))) |
169 | 131, 132,
134, 168 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (𝐴𝐷(𝐹‘𝑛))) |
170 | 128, 130,
169 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 0 ≤ (𝐴𝐷(𝐹‘𝑛))) |
171 | 110 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → 0 ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
172 | 137, 167,
170, 171 | le2sqd 13974 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹‘𝑛)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2) ↔ ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2))) |
173 | 166, 172 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ∧ 𝑛 ∈
(ℤ≥‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹‘𝑛)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
174 | 72, 7, 73, 122, 124, 125, 127, 173 | lmle 24465 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) |
175 | 60, 62, 60 | leadd2d 11570 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆 ↔ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆))) |
176 | 60 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℂ) |
177 | 176 | 2timesd 12216 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) = ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)))) |
178 | 177 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆))) |
179 | | lemuldiv2 11856 |
. . . . . . . . . . . . . 14
⊢ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → ((2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
180 | 87, 179 | mp3an3 1449 |
. . . . . . . . . . . . 13
⊢ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
181 | 60, 75, 180 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 · (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
182 | 175, 178,
181 | 3bitr2d 307 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆 ↔ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2))) |
183 | 182 | biimpar 478 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆) |
184 | 174, 183 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆) |
185 | 184 | ex 413 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆)) |
186 | 71, 185 | sylbird 259 |
. . . . . . 7
⊢ (𝜑 → (¬ (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆)) |
187 | 186 | pm2.18d 127 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆) |
188 | 187 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ 𝑆) |
189 | 94 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑅 ⊆ ℝ) |
190 | 100 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
191 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
192 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝑁‘(𝐴𝑀𝑦)) ∈ V |
193 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
194 | 193 | elrnmpt1 5867 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑌 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ V) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))) |
195 | 191, 192,
194 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))) |
196 | 195, 16 | eleqtrrdi 2850 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅) |
197 | | infrelb 11960 |
. . . . . . 7
⊢ ((𝑅 ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦))) |
198 | 189, 190,
196, 197 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦))) |
199 | 17, 198 | eqbrtrid 5109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑆 ≤ (𝑁‘(𝐴𝑀𝑦))) |
200 | 61, 63, 70, 188, 199 | letrd 11132 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
201 | 56, 200 | eqbrtrrd 5098 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) |
202 | 201 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) |
203 | | oveq2 7283 |
. . . . . 6
⊢ (𝑥 =
((⇝𝑡‘𝐽)‘𝐹) → (𝐴𝑀𝑥) = (𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) |
204 | 203 | fveq2d 6778 |
. . . . 5
⊢ (𝑥 =
((⇝𝑡‘𝐽)‘𝐹) → (𝑁‘(𝐴𝑀𝑥)) = (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹)))) |
205 | 204 | breq1d 5084 |
. . . 4
⊢ (𝑥 =
((⇝𝑡‘𝐽)‘𝐹) → ((𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))) |
206 | 205 | ralbidv 3112 |
. . 3
⊢ (𝑥 =
((⇝𝑡‘𝐽)‘𝐹) → (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))) |
207 | 206 | rspcev 3561 |
. 2
⊢
((((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑌 ∧ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀((⇝𝑡‘𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
208 | 52, 202, 207 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |