MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4 Structured version   Visualization version   GIF version

Theorem minvecolem4 28661
Description: Lemma for minveco 28665. The convergent point of the cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
minveco.t 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
Assertion
Ref Expression
minvecolem4 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐹   𝑛,𝐽,𝑥,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑛,𝑥,𝑦   𝑥,𝑅   𝑆,𝑛,𝑥,𝑦   𝐴,𝑛,𝑥,𝑦   𝐷,𝑛,𝑥,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑇,𝑛   𝑛,𝑋,𝑥   𝑛,𝑌,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑇(𝑥,𝑦)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . 6 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 28595 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
3 minveco.x . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 minveco.d . . . . . . 7 𝐷 = (IndMet‘𝑈)
53, 4imsxmet 28473 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
61, 2, 53syl 18 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
7 minveco.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
87methaus 23125 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
9 lmfun 21984 . . . . 5 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
106, 8, 93syl 18 . . . 4 (𝜑 → Fun (⇝𝑡𝐽))
11 minveco.m . . . . . 6 𝑀 = ( −𝑣𝑈)
12 minveco.n . . . . . 6 𝑁 = (normCV𝑈)
13 minveco.y . . . . . 6 𝑌 = (BaseSet‘𝑊)
14 minveco.w . . . . . 6 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
15 minveco.a . . . . . 6 (𝜑𝐴𝑋)
16 minveco.r . . . . . 6 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
17 minveco.s . . . . . 6 𝑆 = inf(𝑅, ℝ, < )
18 minveco.f . . . . . 6 (𝜑𝐹:ℕ⟶𝑌)
19 minveco.1 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
203, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4a 28658 . . . . 5 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
21 eqid 2822 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
22 nnuz 12269 . . . . . . 7 ℕ = (ℤ‘1)
2313fvexi 6666 . . . . . . . 8 𝑌 ∈ V
2423a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
251, 2syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmCVec)
267mopntop 23045 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2725, 5, 263syl 18 . . . . . . 7 (𝜑𝐽 ∈ Top)
28 elin 3924 . . . . . . . . . . . . 13 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
2914, 28sylib 221 . . . . . . . . . . . 12 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
3029simpld 498 . . . . . . . . . . 11 (𝜑𝑊 ∈ (SubSp‘𝑈))
31 eqid 2822 . . . . . . . . . . . 12 (SubSp‘𝑈) = (SubSp‘𝑈)
323, 13, 31sspba 28508 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
3325, 30, 32syl2anc 587 . . . . . . . . . 10 (𝜑𝑌𝑋)
34 xmetres2 22966 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
356, 33, 34syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
36 eqid 2822 . . . . . . . . . 10 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3736mopntopon 23044 . . . . . . . . 9 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
3835, 37syl 17 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
39 lmcl 21900 . . . . . . . 8 (((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
4038, 20, 39syl2anc 587 . . . . . . 7 (𝜑 → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
41 1zzd 12001 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4221, 22, 24, 27, 40, 41, 18lmss 21901 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
43 eqid 2822 . . . . . . . . . 10 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
4443, 7, 36metrest 23129 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
456, 33, 44syl2anc 587 . . . . . . . 8 (𝜑 → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4645fveq2d 6656 . . . . . . 7 (𝜑 → (⇝𝑡‘(𝐽t 𝑌)) = (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
4746breqd 5053 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4842, 47bitrd 282 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4920, 48mpbird 260 . . . 4 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
50 funbrfv 6698 . . . 4 (Fun (⇝𝑡𝐽) → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5110, 49, 50sylc 65 . . 3 (𝜑 → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
5251, 40eqeltrd 2914 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑌)
533, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4b 28659 . . . . . 6 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
543, 11, 12, 4imsdval 28467 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
5525, 15, 53, 54syl3anc 1368 . . . . 5 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
5655adantr 484 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
573, 4imsmet 28472 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
581, 2, 573syl 18 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
59 metcl 22937 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
6058, 15, 53, 59syl3anc 1368 . . . . . 6 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
6160adantr 484 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
623, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4c 28660 . . . . . 6 (𝜑𝑆 ∈ ℝ)
6362adantr 484 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ∈ ℝ)
6425adantr 484 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmCVec)
6515adantr 484 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
6633sselda 3942 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
673, 11nvmcl 28427 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
6864, 65, 66, 67syl3anc 1368 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
693, 12nvcl 28442 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
7064, 68, 69syl2anc 587 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
7162, 60ltnled 10776 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ ¬ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
72 eqid 2822 . . . . . . . . . . 11 (ℤ‘((⌊‘𝑇) + 1)) = (ℤ‘((⌊‘𝑇) + 1))
736adantr 484 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐷 ∈ (∞Met‘𝑋))
74 minveco.t . . . . . . . . . . . . . . 15 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
7560, 62readdcld 10659 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ)
7675rehalfcld 11872 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
7776resqcld 13607 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈ ℝ)
7862resqcld 13607 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆↑2) ∈ ℝ)
7977, 78resubcld 11057 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
8079adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
8162, 60, 62ltadd1d 11222 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
8262recnd 10658 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆 ∈ ℂ)
83822timesd 11868 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆))
8483breq1d 5052 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
85 2re 11699 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
86 2pos 11728 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
8785, 86pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
8887a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
89 ltmuldiv2 11503 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
9062, 75, 88, 89syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
9181, 84, 903bitr2d 310 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
923, 11, 12, 13, 1, 14, 15, 4, 7, 16minvecolem1 28655 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
9392simp3d 1141 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
9492simp1d 1139 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ⊆ ℝ)
9592simp2d 1140 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ≠ ∅)
96 0re 10632 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
97 breq1 5045 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
9897ralbidv 3187 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9998rspcev 3598 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
10096, 93, 99sylancr 590 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
10196a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ ℝ)
102 infregelb 11612 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
10394, 95, 100, 101, 102syl31anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
10493, 103mpbird 260 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
105104, 17breqtrrdi 5084 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝑆)
106 metge0 22950 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → 0 ≤ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)))
10758, 15, 53, 106syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ≤ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)))
10860, 62, 107, 105addge0d 11205 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆))
109 divge0 11498 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
11075, 108, 88, 109syl21anc 836 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
11162, 76, 105, 110lt2sqd 13615 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2)))
11278, 77posdifd 11216 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆↑2) < ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
11391, 111, 1123bitrd 308 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
114113biimpa 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
11580, 114elrpd 12416 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ+)
116115rpreccld 12429 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∈ ℝ+)
11774, 116eqeltrid 2918 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝑇 ∈ ℝ+)
118117rprege0d 12426 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇))
119 flge0nn0 13185 . . . . . . . . . . . . 13 ((𝑇 ∈ ℝ ∧ 0 ≤ 𝑇) → (⌊‘𝑇) ∈ ℕ0)
120 nn0p1nn 11924 . . . . . . . . . . . . 13 ((⌊‘𝑇) ∈ ℕ0 → ((⌊‘𝑇) + 1) ∈ ℕ)
121118, 119, 1203syl 18 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℕ)
122121nnzd 12074 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℤ)
12349, 51breqtrrd 5070 . . . . . . . . . . . 12 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐹))
124123adantr 484 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐹(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐹))
12515adantr 484 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐴𝑋)
12676adantr 484 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
127126rexrd 10680 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ*)
128 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝜑)
129 eluznn 12306 . . . . . . . . . . . . . . . 16 ((((⌊‘𝑇) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ)
130121, 129sylan 583 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ)
13158adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
13215adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐴𝑋)
13318, 33fssd 6509 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:ℕ⟶𝑋)
134133ffvelrnda 6833 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑋)
135 metcl 22937 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
136131, 132, 134, 135syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
137128, 130, 136syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
138137resqcld 13607 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ∈ ℝ)
13962ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑆 ∈ ℝ)
140139resqcld 13607 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝑆↑2) ∈ ℝ)
141130nnrecred 11676 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ∈ ℝ)
142140, 141readdcld 10659 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
14377ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈ ℝ)
144128, 130, 19syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
145117adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ∈ ℝ+)
146145rpred 12419 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ∈ ℝ)
147 reflcl 13161 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℝ → (⌊‘𝑇) ∈ ℝ)
148 peano2re 10802 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑇) ∈ ℝ → ((⌊‘𝑇) + 1) ∈ ℝ)
149146, 147, 1483syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ∈ ℝ)
150130nnred 11640 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℝ)
151 fllep1 13166 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℝ → 𝑇 ≤ ((⌊‘𝑇) + 1))
152146, 151syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ≤ ((⌊‘𝑇) + 1))
153 eluzle 12244 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1)) → ((⌊‘𝑇) + 1) ≤ 𝑛)
154153adantl 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ≤ 𝑛)
155146, 149, 150, 152, 154letrd 10786 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇𝑛)
15674, 155eqbrtrrid 5078 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛)
157 1red 10631 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 1 ∈ ℝ)
15879ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
159114adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
160130nngt0d 11674 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 < 𝑛)
161 lediv23 11521 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ ((((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ ∧ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
162157, 158, 159, 150, 160, 161syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
163156, 162mpbid 235 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
164140, 141, 143leaddsub2d 11231 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
165163, 164mpbird 260 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2))
166138, 142, 143, 144, 165letrd 10786 . . . . . . . . . . . 12 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2))
16776ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
168 metge0 22950 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
169131, 132, 134, 168syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
170128, 130, 169syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
171110ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
172137, 167, 170, 171le2sqd 13616 . . . . . . . . . . . 12 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ↔ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2)))
173166, 172mpbird 260 . . . . . . . . . . 11 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹𝑛)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
17472, 7, 73, 122, 124, 125, 127, 173lmle 23903 . . . . . . . . . 10 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
17560, 62, 60leadd2d 11224 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 ↔ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
17660recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℂ)
1771762timesd 11868 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) = ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))))
178177breq1d 5052 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
179 lemuldiv2 11510 . . . . . . . . . . . . . 14 (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
18087, 179mp3an3 1447 . . . . . . . . . . . . 13 (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
18160, 75, 180syl2anc 587 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
182175, 178, 1813bitr2d 310 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
183182biimpar 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
184174, 183syldan 594 . . . . . . . . 9 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
185184ex 416 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
18671, 185sylbird 263 . . . . . . 7 (𝜑 → (¬ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
187186pm2.18d 127 . . . . . 6 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
188187adantr 484 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
18994adantr 484 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑅 ⊆ ℝ)
190100adantr 484 . . . . . . 7 ((𝜑𝑦𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
191 simpr 488 . . . . . . . . 9 ((𝜑𝑦𝑌) → 𝑦𝑌)
192 fvex 6665 . . . . . . . . 9 (𝑁‘(𝐴𝑀𝑦)) ∈ V
193 eqid 2822 . . . . . . . . . 10 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
194193elrnmpt1 5807 . . . . . . . . 9 ((𝑦𝑌 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ V) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
195191, 192, 194sylancl 589 . . . . . . . 8 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
196195, 16eleqtrrdi 2925 . . . . . . 7 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅)
197 infrelb 11613 . . . . . . 7 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦)))
198189, 190, 196, 197syl3anc 1368 . . . . . 6 ((𝜑𝑦𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦)))
19917, 198eqbrtrid 5077 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ≤ (𝑁‘(𝐴𝑀𝑦)))
20061, 63, 70, 188, 199letrd 10786 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (𝑁‘(𝐴𝑀𝑦)))
20156, 200eqbrtrrd 5066 . . 3 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))
202201ralrimiva 3174 . 2 (𝜑 → ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))
203 oveq2 7148 . . . . . 6 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (𝐴𝑀𝑥) = (𝐴𝑀((⇝𝑡𝐽)‘𝐹)))
204203fveq2d 6656 . . . . 5 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (𝑁‘(𝐴𝑀𝑥)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
205204breq1d 5052 . . . 4 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → ((𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))))
206205ralbidv 3187 . . 3 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))))
207206rspcev 3598 . 2 ((((⇝𝑡𝐽)‘𝐹) ∈ 𝑌 ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
20852, 202, 207syl2anc 587 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wne 3011  wral 3130  wrex 3131  Vcvv 3469  cin 3907  wss 3908  c0 4265   class class class wbr 5042  cmpt 5122   × cxp 5530  ran crn 5533  cres 5534  Fun wfun 6328  wf 6330  cfv 6334  (class class class)co 7140  infcinf 8893  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cuz 12231  +crp 12377  cfl 13155  cexp 13425  t crest 16685  ∞Metcxmet 20074  Metcmet 20075  MetOpencmopn 20079  Topctop 21496  TopOnctopon 21513  𝑡clm 21829  Hauscha 21911  NrmCVeccnv 28365  BaseSetcba 28367  𝑣 cnsb 28370  normCVcnmcv 28371  IndMetcims 28372  SubSpcss 28502  CPreHilOLDccphlo 28593  CBanccbn 28643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-rest 16687  df-topgen 16708  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-top 21497  df-topon 21514  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lm 21832  df-haus 21918  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-cfil 23857  df-cau 23858  df-cmet 23859  df-grpo 28274  df-gid 28275  df-ginv 28276  df-gdiv 28277  df-ablo 28326  df-vc 28340  df-nv 28373  df-va 28376  df-ba 28377  df-sm 28378  df-0v 28379  df-vs 28380  df-nmcv 28381  df-ims 28382  df-ssp 28503  df-ph 28594  df-cbn 28644
This theorem is referenced by:  minvecolem5  28662
  Copyright terms: Public domain W3C validator