MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4 Structured version   Visualization version   GIF version

Theorem minvecolem4 30909
Description: Lemma for minveco 30913. The convergent point of the Cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
minveco.t 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
Assertion
Ref Expression
minvecolem4 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐹   𝑛,𝐽,𝑥,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑛,𝑥,𝑦   𝑥,𝑅   𝑆,𝑛,𝑥,𝑦   𝐴,𝑛,𝑥,𝑦   𝐷,𝑛,𝑥,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑇,𝑛   𝑛,𝑋,𝑥   𝑛,𝑌,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑇(𝑥,𝑦)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . 6 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 30843 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
3 minveco.x . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 minveco.d . . . . . . 7 𝐷 = (IndMet‘𝑈)
53, 4imsxmet 30721 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
61, 2, 53syl 18 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
7 minveco.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
87methaus 24549 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
9 lmfun 23405 . . . . 5 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
106, 8, 93syl 18 . . . 4 (𝜑 → Fun (⇝𝑡𝐽))
11 minveco.m . . . . . 6 𝑀 = ( −𝑣𝑈)
12 minveco.n . . . . . 6 𝑁 = (normCV𝑈)
13 minveco.y . . . . . 6 𝑌 = (BaseSet‘𝑊)
14 minveco.w . . . . . 6 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
15 minveco.a . . . . . 6 (𝜑𝐴𝑋)
16 minveco.r . . . . . 6 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
17 minveco.s . . . . . 6 𝑆 = inf(𝑅, ℝ, < )
18 minveco.f . . . . . 6 (𝜑𝐹:ℕ⟶𝑌)
19 minveco.1 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
203, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4a 30906 . . . . 5 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
21 eqid 2735 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
22 nnuz 12919 . . . . . . 7 ℕ = (ℤ‘1)
2313fvexi 6921 . . . . . . . 8 𝑌 ∈ V
2423a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
251, 2syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmCVec)
267mopntop 24466 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2725, 5, 263syl 18 . . . . . . 7 (𝜑𝐽 ∈ Top)
28 elin 3979 . . . . . . . . . . . . 13 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
2914, 28sylib 218 . . . . . . . . . . . 12 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
3029simpld 494 . . . . . . . . . . 11 (𝜑𝑊 ∈ (SubSp‘𝑈))
31 eqid 2735 . . . . . . . . . . . 12 (SubSp‘𝑈) = (SubSp‘𝑈)
323, 13, 31sspba 30756 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
3325, 30, 32syl2anc 584 . . . . . . . . . 10 (𝜑𝑌𝑋)
34 xmetres2 24387 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
356, 33, 34syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
36 eqid 2735 . . . . . . . . . 10 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3736mopntopon 24465 . . . . . . . . 9 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
3835, 37syl 17 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
39 lmcl 23321 . . . . . . . 8 (((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
4038, 20, 39syl2anc 584 . . . . . . 7 (𝜑 → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
41 1zzd 12646 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4221, 22, 24, 27, 40, 41, 18lmss 23322 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
43 eqid 2735 . . . . . . . . . 10 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
4443, 7, 36metrest 24553 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
456, 33, 44syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4645fveq2d 6911 . . . . . . 7 (𝜑 → (⇝𝑡‘(𝐽t 𝑌)) = (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
4746breqd 5159 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4842, 47bitrd 279 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4920, 48mpbird 257 . . . 4 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
50 funbrfv 6958 . . . 4 (Fun (⇝𝑡𝐽) → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5110, 49, 50sylc 65 . . 3 (𝜑 → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
5251, 40eqeltrd 2839 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑌)
533, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4b 30907 . . . . . 6 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
543, 11, 12, 4imsdval 30715 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
5525, 15, 53, 54syl3anc 1370 . . . . 5 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
5655adantr 480 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
573, 4imsmet 30720 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
581, 2, 573syl 18 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
59 metcl 24358 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
6058, 15, 53, 59syl3anc 1370 . . . . . 6 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
6160adantr 480 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
623, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4c 30908 . . . . . 6 (𝜑𝑆 ∈ ℝ)
6362adantr 480 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ∈ ℝ)
6425adantr 480 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmCVec)
6515adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
6633sselda 3995 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
673, 11nvmcl 30675 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
6864, 65, 66, 67syl3anc 1370 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
693, 12nvcl 30690 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
7064, 68, 69syl2anc 584 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
7162, 60ltnled 11406 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ ¬ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
72 eqid 2735 . . . . . . . . . . 11 (ℤ‘((⌊‘𝑇) + 1)) = (ℤ‘((⌊‘𝑇) + 1))
736adantr 480 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐷 ∈ (∞Met‘𝑋))
74 minveco.t . . . . . . . . . . . . . . 15 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
7560, 62readdcld 11288 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ)
7675rehalfcld 12511 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
7776resqcld 14162 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈ ℝ)
7862resqcld 14162 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆↑2) ∈ ℝ)
7977, 78resubcld 11689 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
8079adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
8162, 60, 62ltadd1d 11854 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
8262recnd 11287 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆 ∈ ℂ)
83822timesd 12507 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆))
8483breq1d 5158 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
85 2re 12338 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
86 2pos 12367 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
8785, 86pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
8887a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
89 ltmuldiv2 12140 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
9062, 75, 88, 89syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
9181, 84, 903bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
923, 11, 12, 13, 1, 14, 15, 4, 7, 16minvecolem1 30903 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
9392simp3d 1143 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
9492simp1d 1141 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ⊆ ℝ)
9592simp2d 1142 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ≠ ∅)
96 0re 11261 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
97 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
9897ralbidv 3176 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
9998rspcev 3622 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
10096, 93, 99sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
10196a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ ℝ)
102 infregelb 12250 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
10394, 95, 100, 101, 102syl31anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
10493, 103mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
105104, 17breqtrrdi 5190 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝑆)
106 metge0 24371 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → 0 ≤ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)))
10758, 15, 53, 106syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ≤ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)))
10860, 62, 107, 105addge0d 11837 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆))
109 divge0 12135 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
11075, 108, 88, 109syl21anc 838 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
11162, 76, 105, 110lt2sqd 14292 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2)))
11278, 77posdifd 11848 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆↑2) < ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
11391, 111, 1123bitrd 305 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
114113biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
11580, 114elrpd 13072 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ+)
116115rpreccld 13085 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∈ ℝ+)
11774, 116eqeltrid 2843 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝑇 ∈ ℝ+)
118117rprege0d 13082 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇))
119 flge0nn0 13857 . . . . . . . . . . . . 13 ((𝑇 ∈ ℝ ∧ 0 ≤ 𝑇) → (⌊‘𝑇) ∈ ℕ0)
120 nn0p1nn 12563 . . . . . . . . . . . . 13 ((⌊‘𝑇) ∈ ℕ0 → ((⌊‘𝑇) + 1) ∈ ℕ)
121118, 119, 1203syl 18 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℕ)
122121nnzd 12638 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℤ)
12349, 51breqtrrd 5176 . . . . . . . . . . . 12 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐹))
124123adantr 480 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐹(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐹))
12515adantr 480 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐴𝑋)
12676adantr 480 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
127126rexrd 11309 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ*)
128 simpll 767 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝜑)
129 eluznn 12958 . . . . . . . . . . . . . . . 16 ((((⌊‘𝑇) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ)
130121, 129sylan 580 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ)
13158adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
13215adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐴𝑋)
13318, 33fssd 6754 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:ℕ⟶𝑋)
134133ffvelcdmda 7104 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑋)
135 metcl 24358 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
136131, 132, 134, 135syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
137128, 130, 136syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
138137resqcld 14162 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ∈ ℝ)
13962ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑆 ∈ ℝ)
140139resqcld 14162 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝑆↑2) ∈ ℝ)
141130nnrecred 12315 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ∈ ℝ)
142140, 141readdcld 11288 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
14377ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈ ℝ)
144128, 130, 19syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
145117adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ∈ ℝ+)
146145rpred 13075 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ∈ ℝ)
147 reflcl 13833 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℝ → (⌊‘𝑇) ∈ ℝ)
148 peano2re 11432 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑇) ∈ ℝ → ((⌊‘𝑇) + 1) ∈ ℝ)
149146, 147, 1483syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ∈ ℝ)
150130nnred 12279 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℝ)
151 fllep1 13838 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℝ → 𝑇 ≤ ((⌊‘𝑇) + 1))
152146, 151syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ≤ ((⌊‘𝑇) + 1))
153 eluzle 12889 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1)) → ((⌊‘𝑇) + 1) ≤ 𝑛)
154153adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ≤ 𝑛)
155146, 149, 150, 152, 154letrd 11416 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇𝑛)
15674, 155eqbrtrrid 5184 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛)
157 1red 11260 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 1 ∈ ℝ)
15879ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
159114adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
160130nngt0d 12313 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 < 𝑛)
161 lediv23 12158 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ ((((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ ∧ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
162157, 158, 159, 150, 160, 161syl122anc 1378 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
163156, 162mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
164140, 141, 143leaddsub2d 11863 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
165163, 164mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2))
166138, 142, 143, 144, 165letrd 11416 . . . . . . . . . . . 12 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2))
16776ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
168 metge0 24371 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
169131, 132, 134, 168syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
170128, 130, 169syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
171110ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
172137, 167, 170, 171le2sqd 14293 . . . . . . . . . . . 12 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ↔ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2)))
173166, 172mpbird 257 . . . . . . . . . . 11 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹𝑛)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
17472, 7, 73, 122, 124, 125, 127, 173lmle 25349 . . . . . . . . . 10 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
17560, 62, 60leadd2d 11856 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 ↔ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
17660recnd 11287 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℂ)
1771762timesd 12507 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) = ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))))
178177breq1d 5158 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
179 lemuldiv2 12147 . . . . . . . . . . . . . 14 (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
18087, 179mp3an3 1449 . . . . . . . . . . . . 13 (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
18160, 75, 180syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
182175, 178, 1813bitr2d 307 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
183182biimpar 477 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
184174, 183syldan 591 . . . . . . . . 9 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
185184ex 412 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
18671, 185sylbird 260 . . . . . . 7 (𝜑 → (¬ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
187186pm2.18d 127 . . . . . 6 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
188187adantr 480 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
18994adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑅 ⊆ ℝ)
190100adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
191 simpr 484 . . . . . . . . 9 ((𝜑𝑦𝑌) → 𝑦𝑌)
192 fvex 6920 . . . . . . . . 9 (𝑁‘(𝐴𝑀𝑦)) ∈ V
193 eqid 2735 . . . . . . . . . 10 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
194193elrnmpt1 5974 . . . . . . . . 9 ((𝑦𝑌 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ V) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
195191, 192, 194sylancl 586 . . . . . . . 8 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
196195, 16eleqtrrdi 2850 . . . . . . 7 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅)
197 infrelb 12251 . . . . . . 7 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦)))
198189, 190, 196, 197syl3anc 1370 . . . . . 6 ((𝜑𝑦𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦)))
19917, 198eqbrtrid 5183 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ≤ (𝑁‘(𝐴𝑀𝑦)))
20061, 63, 70, 188, 199letrd 11416 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (𝑁‘(𝐴𝑀𝑦)))
20156, 200eqbrtrrd 5172 . . 3 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))
202201ralrimiva 3144 . 2 (𝜑 → ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))
203 oveq2 7439 . . . . . 6 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (𝐴𝑀𝑥) = (𝐴𝑀((⇝𝑡𝐽)‘𝐹)))
204203fveq2d 6911 . . . . 5 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (𝑁‘(𝐴𝑀𝑥)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
205204breq1d 5158 . . . 4 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → ((𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))))
206205ralbidv 3176 . . 3 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))))
207206rspcev 3622 . 2 ((((⇝𝑡𝐽)‘𝐹) ∈ 𝑌 ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
20852, 202, 207syl2anc 584 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  c0 4339   class class class wbr 5148  cmpt 5231   × cxp 5687  ran crn 5690  cres 5691  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  infcinf 9479  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cuz 12876  +crp 13032  cfl 13827  cexp 14099  t crest 17467  ∞Metcxmet 21367  Metcmet 21368  MetOpencmopn 21372  Topctop 22915  TopOnctopon 22932  𝑡clm 23250  Hauscha 23332  NrmCVeccnv 30613  BaseSetcba 30615  𝑣 cnsb 30618  normCVcnmcv 30619  IndMetcims 30620  SubSpcss 30750  CPreHilOLDccphlo 30841  CBanccbn 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lm 23253  df-haus 23339  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-cfil 25303  df-cau 25304  df-cmet 25305  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-ssp 30751  df-ph 30842  df-cbn 30892
This theorem is referenced by:  minvecolem5  30910
  Copyright terms: Public domain W3C validator