MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref Structured version   Visualization version   GIF version

Theorem asymref 5947
Description: Two ways of saying a relation is antisymmetric and reflexive. 𝑅 is the field of a relation by relfld 6098. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem asymref
StepHypRef Expression
1 df-br 5034 . . . . . . . . . . 11 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
2 vex 3447 . . . . . . . . . . . 12 𝑥 ∈ V
3 vex 3447 . . . . . . . . . . . 12 𝑦 ∈ V
42, 3opeluu 5330 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → (𝑥 𝑅𝑦 𝑅))
51, 4sylbi 220 . . . . . . . . . 10 (𝑥𝑅𝑦 → (𝑥 𝑅𝑦 𝑅))
65simpld 498 . . . . . . . . 9 (𝑥𝑅𝑦𝑥 𝑅)
76adantr 484 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 𝑅)
87pm4.71ri 564 . . . . . . 7 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
98bibi1i 342 . . . . . 6 (((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
10 elin 3900 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
112, 3brcnv 5721 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
12 df-br 5034 . . . . . . . . . 10 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1311, 12bitr3i 280 . . . . . . . . 9 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
141, 13anbi12i 629 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1510, 14bitr4i 281 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
163opelresi 5830 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (𝑥 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
17 df-br 5034 . . . . . . . . . 10 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
183ideq 5691 . . . . . . . . . 10 (𝑥 I 𝑦𝑥 = 𝑦)
1917, 18bitr3i 280 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
2019anbi2i 625 . . . . . . . 8 ((𝑥 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 𝑅𝑥 = 𝑦))
2116, 20bitri 278 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (𝑥 𝑅𝑥 = 𝑦))
2215, 21bibi12i 343 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)))
23 pm5.32 577 . . . . . 6 ((𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
249, 22, 233bitr4i 306 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2524albii 1821 . . . 4 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
26 19.21v 1940 . . . 4 (∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2725, 26bitri 278 . . 3 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2827albii 1821 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
29 relcnv 5938 . . . 4 Rel 𝑅
30 relin2 5654 . . . 4 (Rel 𝑅 → Rel (𝑅𝑅))
3129, 30ax-mp 5 . . 3 Rel (𝑅𝑅)
32 relres 5851 . . 3 Rel ( I ↾ 𝑅)
33 eqrel 5626 . . 3 ((Rel (𝑅𝑅) ∧ Rel ( I ↾ 𝑅)) → ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅))))
3431, 32, 33mp2an 691 . 2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)))
35 df-ral 3114 . 2 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
3628, 34, 353bitr4i 306 1 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2112  wral 3109  cin 3883  cop 4534   cuni 4803   class class class wbr 5033   I cid 5427  ccnv 5522  cres 5525  Rel wrel 5528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-res 5535
This theorem is referenced by:  asymref2  5948  letsr  17833
  Copyright terms: Public domain W3C validator