MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref Structured version   Visualization version   GIF version

Theorem asymref 6110
Description: Two ways of saying a relation is antisymmetric and reflexive. 𝑅 is the field of a relation by relfld 6269. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem asymref
StepHypRef Expression
1 df-br 5125 . . . . . . . . . . 11 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
2 vex 3468 . . . . . . . . . . . 12 𝑥 ∈ V
3 vex 3468 . . . . . . . . . . . 12 𝑦 ∈ V
42, 3opeluu 5450 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → (𝑥 𝑅𝑦 𝑅))
51, 4sylbi 217 . . . . . . . . . 10 (𝑥𝑅𝑦 → (𝑥 𝑅𝑦 𝑅))
65simpld 494 . . . . . . . . 9 (𝑥𝑅𝑦𝑥 𝑅)
76adantr 480 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 𝑅)
87pm4.71ri 560 . . . . . . 7 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
98bibi1i 338 . . . . . 6 (((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
10 elin 3947 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
112, 3brcnv 5867 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
12 df-br 5125 . . . . . . . . . 10 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1311, 12bitr3i 277 . . . . . . . . 9 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
141, 13anbi12i 628 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1510, 14bitr4i 278 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
163opelresi 5979 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (𝑥 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
17 df-br 5125 . . . . . . . . . 10 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
183ideq 5837 . . . . . . . . . 10 (𝑥 I 𝑦𝑥 = 𝑦)
1917, 18bitr3i 277 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
2019anbi2i 623 . . . . . . . 8 ((𝑥 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 𝑅𝑥 = 𝑦))
2116, 20bitri 275 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (𝑥 𝑅𝑥 = 𝑦))
2215, 21bibi12i 339 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)))
23 pm5.32 573 . . . . . 6 ((𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
249, 22, 233bitr4i 303 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2524albii 1819 . . . 4 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
26 19.21v 1939 . . . 4 (∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2725, 26bitri 275 . . 3 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2827albii 1819 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
29 relcnv 6096 . . . 4 Rel 𝑅
30 relin2 5797 . . . 4 (Rel 𝑅 → Rel (𝑅𝑅))
3129, 30ax-mp 5 . . 3 Rel (𝑅𝑅)
32 relres 5997 . . 3 Rel ( I ↾ 𝑅)
33 eqrel 5768 . . 3 ((Rel (𝑅𝑅) ∧ Rel ( I ↾ 𝑅)) → ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅))))
3431, 32, 33mp2an 692 . 2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)))
35 df-ral 3053 . 2 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
3628, 34, 353bitr4i 303 1 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3052  cin 3930  cop 4612   cuni 4888   class class class wbr 5124   I cid 5552  ccnv 5658  cres 5661  Rel wrel 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-res 5671
This theorem is referenced by:  asymref2  6111  letsr  18608
  Copyright terms: Public domain W3C validator