MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref Structured version   Visualization version   GIF version

Theorem asymref 6114
Description: Two ways of saying a relation is antisymmetric and reflexive. 𝑅 is the field of a relation by relfld 6271. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem asymref
StepHypRef Expression
1 df-br 5148 . . . . . . . . . . 11 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
2 vex 3478 . . . . . . . . . . . 12 𝑥 ∈ V
3 vex 3478 . . . . . . . . . . . 12 𝑦 ∈ V
42, 3opeluu 5469 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → (𝑥 𝑅𝑦 𝑅))
51, 4sylbi 216 . . . . . . . . . 10 (𝑥𝑅𝑦 → (𝑥 𝑅𝑦 𝑅))
65simpld 495 . . . . . . . . 9 (𝑥𝑅𝑦𝑥 𝑅)
76adantr 481 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 𝑅)
87pm4.71ri 561 . . . . . . 7 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
98bibi1i 338 . . . . . 6 (((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
10 elin 3963 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
112, 3brcnv 5880 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
12 df-br 5148 . . . . . . . . . 10 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1311, 12bitr3i 276 . . . . . . . . 9 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
141, 13anbi12i 627 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1510, 14bitr4i 277 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
163opelresi 5987 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (𝑥 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
17 df-br 5148 . . . . . . . . . 10 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
183ideq 5850 . . . . . . . . . 10 (𝑥 I 𝑦𝑥 = 𝑦)
1917, 18bitr3i 276 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
2019anbi2i 623 . . . . . . . 8 ((𝑥 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 𝑅𝑥 = 𝑦))
2116, 20bitri 274 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (𝑥 𝑅𝑥 = 𝑦))
2215, 21bibi12i 339 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)))
23 pm5.32 574 . . . . . 6 ((𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
249, 22, 233bitr4i 302 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2524albii 1821 . . . 4 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
26 19.21v 1942 . . . 4 (∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2725, 26bitri 274 . . 3 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2827albii 1821 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
29 relcnv 6100 . . . 4 Rel 𝑅
30 relin2 5811 . . . 4 (Rel 𝑅 → Rel (𝑅𝑅))
3129, 30ax-mp 5 . . 3 Rel (𝑅𝑅)
32 relres 6008 . . 3 Rel ( I ↾ 𝑅)
33 eqrel 5782 . . 3 ((Rel (𝑅𝑅) ∧ Rel ( I ↾ 𝑅)) → ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅))))
3431, 32, 33mp2an 690 . 2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)))
35 df-ral 3062 . 2 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
3628, 34, 353bitr4i 302 1 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wral 3061  cin 3946  cop 4633   cuni 4907   class class class wbr 5147   I cid 5572  ccnv 5674  cres 5677  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-res 5687
This theorem is referenced by:  asymref2  6115  letsr  18542
  Copyright terms: Public domain W3C validator