![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfilucfil4 | Structured version Visualization version GIF version |
Description: Given a metric π· and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
cfilucfil4 | β’ ((π β β β§ π· β (βMetβπ) β§ πΆ β (Filβπ)) β (πΆ β (CauFiluβ(metUnifβπ·)) β πΆ β (CauFilβπ·))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfilucfil3 24836 | . . . 4 β’ ((π β β β§ π· β (βMetβπ)) β ((πΆ β (Filβπ) β§ πΆ β (CauFiluβ(metUnifβπ·))) β πΆ β (CauFilβπ·))) | |
2 | cfilfil 24783 | . . . . . . 7 β’ ((π· β (βMetβπ) β§ πΆ β (CauFilβπ·)) β πΆ β (Filβπ)) | |
3 | 2 | ex 413 | . . . . . 6 β’ (π· β (βMetβπ) β (πΆ β (CauFilβπ·) β πΆ β (Filβπ))) |
4 | 3 | adantl 482 | . . . . 5 β’ ((π β β β§ π· β (βMetβπ)) β (πΆ β (CauFilβπ·) β πΆ β (Filβπ))) |
5 | 4 | pm4.71rd 563 | . . . 4 β’ ((π β β β§ π· β (βMetβπ)) β (πΆ β (CauFilβπ·) β (πΆ β (Filβπ) β§ πΆ β (CauFilβπ·)))) |
6 | 1, 5 | bitrd 278 | . . 3 β’ ((π β β β§ π· β (βMetβπ)) β ((πΆ β (Filβπ) β§ πΆ β (CauFiluβ(metUnifβπ·))) β (πΆ β (Filβπ) β§ πΆ β (CauFilβπ·)))) |
7 | pm5.32 574 | . . 3 β’ ((πΆ β (Filβπ) β (πΆ β (CauFiluβ(metUnifβπ·)) β πΆ β (CauFilβπ·))) β ((πΆ β (Filβπ) β§ πΆ β (CauFiluβ(metUnifβπ·))) β (πΆ β (Filβπ) β§ πΆ β (CauFilβπ·)))) | |
8 | 6, 7 | sylibr 233 | . 2 β’ ((π β β β§ π· β (βMetβπ)) β (πΆ β (Filβπ) β (πΆ β (CauFiluβ(metUnifβπ·)) β πΆ β (CauFilβπ·)))) |
9 | 8 | 3impia 1117 | 1 β’ ((π β β β§ π· β (βMetβπ) β§ πΆ β (Filβπ)) β (πΆ β (CauFiluβ(metUnifβπ·)) β πΆ β (CauFilβπ·))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 β wcel 2106 β wne 2940 β c0 4322 βcfv 6543 βMetcxmet 20928 metUnifcmetu 20934 Filcfil 23348 CauFiluccfilu 23790 CauFilccfil 24768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-2 12274 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ico 13329 df-psmet 20935 df-xmet 20936 df-fbas 20940 df-fg 20941 df-metu 20942 df-fil 23349 df-ust 23704 df-cfilu 23791 df-cfil 24771 |
This theorem is referenced by: cmetcusp1 24869 |
Copyright terms: Public domain | W3C validator |