MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil4 Structured version   Visualization version   GIF version

Theorem cfilucfil4 24837
Description: Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
cfilucfil4 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐢 ∈ (Filβ€˜π‘‹)) β†’ (𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·)) ↔ 𝐢 ∈ (CauFilβ€˜π·)))

Proof of Theorem cfilucfil4
StepHypRef Expression
1 cfilucfil3 24836 . . . 4 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ ((𝐢 ∈ (Filβ€˜π‘‹) ∧ 𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·))) ↔ 𝐢 ∈ (CauFilβ€˜π·)))
2 cfilfil 24783 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐢 ∈ (CauFilβ€˜π·)) β†’ 𝐢 ∈ (Filβ€˜π‘‹))
32ex 413 . . . . . 6 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐢 ∈ (CauFilβ€˜π·) β†’ 𝐢 ∈ (Filβ€˜π‘‹)))
43adantl 482 . . . . 5 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐢 ∈ (CauFilβ€˜π·) β†’ 𝐢 ∈ (Filβ€˜π‘‹)))
54pm4.71rd 563 . . . 4 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐢 ∈ (CauFilβ€˜π·) ↔ (𝐢 ∈ (Filβ€˜π‘‹) ∧ 𝐢 ∈ (CauFilβ€˜π·))))
61, 5bitrd 278 . . 3 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ ((𝐢 ∈ (Filβ€˜π‘‹) ∧ 𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·))) ↔ (𝐢 ∈ (Filβ€˜π‘‹) ∧ 𝐢 ∈ (CauFilβ€˜π·))))
7 pm5.32 574 . . 3 ((𝐢 ∈ (Filβ€˜π‘‹) β†’ (𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·)) ↔ 𝐢 ∈ (CauFilβ€˜π·))) ↔ ((𝐢 ∈ (Filβ€˜π‘‹) ∧ 𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·))) ↔ (𝐢 ∈ (Filβ€˜π‘‹) ∧ 𝐢 ∈ (CauFilβ€˜π·))))
86, 7sylibr 233 . 2 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐢 ∈ (Filβ€˜π‘‹) β†’ (𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·)) ↔ 𝐢 ∈ (CauFilβ€˜π·))))
983impia 1117 1 ((𝑋 β‰  βˆ… ∧ 𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐢 ∈ (Filβ€˜π‘‹)) β†’ (𝐢 ∈ (CauFiluβ€˜(metUnifβ€˜π·)) ↔ 𝐢 ∈ (CauFilβ€˜π·)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   ∈ wcel 2106   β‰  wne 2940  βˆ…c0 4322  β€˜cfv 6543  βˆžMetcxmet 20928  metUnifcmetu 20934  Filcfil 23348  CauFiluccfilu 23790  CauFilccfil 24768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-2 12274  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ico 13329  df-psmet 20935  df-xmet 20936  df-fbas 20940  df-fg 20941  df-metu 20942  df-fil 23349  df-ust 23704  df-cfilu 23791  df-cfil 24771
This theorem is referenced by:  cmetcusp1  24869
  Copyright terms: Public domain W3C validator