Step | Hyp | Ref
| Expression |
1 | | dfcleq 2731 |
. . . 4
⊢ ((dom
𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
2 | | alcom 2156 |
. . . . 5
⊢
(∀𝑦∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
3 | | 19.3v 1985 |
. . . . 5
⊢
(∀𝑦∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
4 | | ax6ev 1973 |
. . . . . . . . 9
⊢
∃𝑦 𝑦 = 𝑥 |
5 | | pm5.5 362 |
. . . . . . . . 9
⊢
(∃𝑦 𝑦 = 𝑥 → ((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . 8
⊢
((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
7 | | 19.23v 1945 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))) |
8 | | 19.3v 1985 |
. . . . . . . 8
⊢
(∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
9 | 6, 7, 8 | 3bitr4ri 304 |
. . . . . . 7
⊢
(∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))) |
10 | | pm5.32 574 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))) |
11 | | ancom 461 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)) |
12 | | ancom 461 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)) |
13 | 11, 12 | bibi12i 340 |
. . . . . . . . 9
⊢ (((𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
14 | 10, 13 | bitri 274 |
. . . . . . . 8
⊢ ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
15 | 14 | albii 1822 |
. . . . . . 7
⊢
(∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
16 | 9, 15 | bitri 274 |
. . . . . 6
⊢
(∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
17 | 16 | albii 1822 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
18 | 2, 3, 17 | 3bitr3i 301 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
19 | 1, 18 | bitri 274 |
. . 3
⊢ ((dom
𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
20 | | eqopab2bw 5461 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ∀𝑥∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
21 | | opabresid 5957 |
. . . . 5
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} |
22 | 21 | eqcomi 2747 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐴 ∪ ran 𝐴)) |
23 | | opabresid 5957 |
. . . . 5
⊢ ( I
↾ (dom 𝐵 ∪ ran
𝐵)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} |
24 | 23 | eqcomi 2747 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐵 ∪ ran 𝐵)) |
25 | 22, 24 | eqeq12i 2756 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
26 | 19, 20, 25 | 3bitr2i 299 |
. 2
⊢ ((dom
𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
27 | | relexp0g 14733 |
. . 3
⊢ (𝐴 ∈ 𝑈 → (𝐴↑𝑟0) = ( I ↾
(dom 𝐴 ∪ ran 𝐴))) |
28 | | relexp0g 14733 |
. . 3
⊢ (𝐵 ∈ 𝑉 → (𝐵↑𝑟0) = ( I ↾
(dom 𝐵 ∪ ran 𝐵))) |
29 | 27, 28 | eqeqan12d 2752 |
. 2
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((𝐴↑𝑟0) = (𝐵↑𝑟0)
↔ ( I ↾ (dom 𝐴
∪ ran 𝐴)) = ( I ↾
(dom 𝐵 ∪ ran 𝐵)))) |
30 | 26, 29 | bitr4id 290 |
1
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴↑𝑟0) = (𝐵↑𝑟0))) |