Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp0eq Structured version   Visualization version   GIF version

Theorem relexp0eq 43694
Description: The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.)
Assertion
Ref Expression
relexp0eq ((𝐴𝑈𝐵𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴𝑟0) = (𝐵𝑟0)))

Proof of Theorem relexp0eq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcleq 2722 . . . 4 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
2 alcom 2160 . . . . 5 (∀𝑦𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
3 19.3v 1982 . . . . 5 (∀𝑦𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
4 ax6ev 1969 . . . . . . . . 9 𝑦 𝑦 = 𝑥
5 pm5.5 361 . . . . . . . . 9 (∃𝑦 𝑦 = 𝑥 → ((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
64, 5ax-mp 5 . . . . . . . 8 ((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
7 19.23v 1942 . . . . . . . 8 (∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
8 19.3v 1982 . . . . . . . 8 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
96, 7, 83bitr4ri 304 . . . . . . 7 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
10 pm5.32 573 . . . . . . . . 9 ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
11 ancom 460 . . . . . . . . . 10 ((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥))
12 ancom 460 . . . . . . . . . 10 ((𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))
1311, 12bibi12i 339 . . . . . . . . 9 (((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1410, 13bitri 275 . . . . . . . 8 ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1514albii 1819 . . . . . . 7 (∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
169, 15bitri 275 . . . . . 6 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1716albii 1819 . . . . 5 (∀𝑥𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
182, 3, 173bitr3i 301 . . . 4 (∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
191, 18bitri 275 . . 3 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
20 eqopab2bw 5491 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
21 opabresid 6001 . . . . 5 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)}
2221eqcomi 2738 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐴 ∪ ran 𝐴))
23 opabresid 6001 . . . . 5 ( I ↾ (dom 𝐵 ∪ ran 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)}
2423eqcomi 2738 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐵 ∪ ran 𝐵))
2522, 24eqeq12i 2747 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
2619, 20, 253bitr2i 299 . 2 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
27 relexp0g 14929 . . 3 (𝐴𝑈 → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
28 relexp0g 14929 . . 3 (𝐵𝑉 → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
2927, 28eqeqan12d 2743 . 2 ((𝐴𝑈𝐵𝑉) → ((𝐴𝑟0) = (𝐵𝑟0) ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))))
3026, 29bitr4id 290 1 ((𝐴𝑈𝐵𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴𝑟0) = (𝐵𝑟0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  cun 3901  {copab 5154   I cid 5513  dom cdm 5619  ran crn 5620  cres 5621  (class class class)co 7349  0cc0 11009  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071  ax-i2m1 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-n0 12385  df-relexp 14927
This theorem is referenced by:  iunrelexp0  43695
  Copyright terms: Public domain W3C validator