Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp0eq Structured version   Visualization version   GIF version

Theorem relexp0eq 43793
Description: The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.)
Assertion
Ref Expression
relexp0eq ((𝐴𝑈𝐵𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴𝑟0) = (𝐵𝑟0)))

Proof of Theorem relexp0eq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcleq 2724 . . . 4 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
2 alcom 2162 . . . . 5 (∀𝑦𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
3 19.3v 1983 . . . . 5 (∀𝑦𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
4 ax6ev 1970 . . . . . . . . 9 𝑦 𝑦 = 𝑥
5 pm5.5 361 . . . . . . . . 9 (∃𝑦 𝑦 = 𝑥 → ((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
64, 5ax-mp 5 . . . . . . . 8 ((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
7 19.23v 1943 . . . . . . . 8 (∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
8 19.3v 1983 . . . . . . . 8 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
96, 7, 83bitr4ri 304 . . . . . . 7 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
10 pm5.32 573 . . . . . . . . 9 ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
11 ancom 460 . . . . . . . . . 10 ((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥))
12 ancom 460 . . . . . . . . . 10 ((𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))
1311, 12bibi12i 339 . . . . . . . . 9 (((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1410, 13bitri 275 . . . . . . . 8 ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1514albii 1820 . . . . . . 7 (∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
169, 15bitri 275 . . . . . 6 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1716albii 1820 . . . . 5 (∀𝑥𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
182, 3, 173bitr3i 301 . . . 4 (∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
191, 18bitri 275 . . 3 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
20 eqopab2bw 5486 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
21 opabresid 5998 . . . . 5 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)}
2221eqcomi 2740 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐴 ∪ ran 𝐴))
23 opabresid 5998 . . . . 5 ( I ↾ (dom 𝐵 ∪ ran 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)}
2423eqcomi 2740 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐵 ∪ ran 𝐵))
2522, 24eqeq12i 2749 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
2619, 20, 253bitr2i 299 . 2 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
27 relexp0g 14929 . . 3 (𝐴𝑈 → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
28 relexp0g 14929 . . 3 (𝐵𝑉 → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
2927, 28eqeqan12d 2745 . 2 ((𝐴𝑈𝐵𝑉) → ((𝐴𝑟0) = (𝐵𝑟0) ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))))
3026, 29bitr4id 290 1 ((𝐴𝑈𝐵𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴𝑟0) = (𝐵𝑟0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  cun 3895  {copab 5151   I cid 5508  dom cdm 5614  ran crn 5615  cres 5616  (class class class)co 7346  0cc0 11006  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068  ax-i2m1 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-n0 12382  df-relexp 14927
This theorem is referenced by:  iunrelexp0  43794
  Copyright terms: Public domain W3C validator