| Step | Hyp | Ref
| Expression |
| 1 | | dfcleq 2730 |
. . . 4
⊢ ((dom
𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
| 2 | | alcom 2159 |
. . . . 5
⊢
(∀𝑦∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
| 3 | | 19.3v 1981 |
. . . . 5
⊢
(∀𝑦∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
| 4 | | ax6ev 1969 |
. . . . . . . . 9
⊢
∃𝑦 𝑦 = 𝑥 |
| 5 | | pm5.5 361 |
. . . . . . . . 9
⊢
(∃𝑦 𝑦 = 𝑥 → ((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))) |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . 8
⊢
((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
| 7 | | 19.23v 1942 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))) |
| 8 | | 19.3v 1981 |
. . . . . . . 8
⊢
(∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) |
| 9 | 6, 7, 8 | 3bitr4ri 304 |
. . . . . . 7
⊢
(∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))) |
| 10 | | pm5.32 573 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))) |
| 11 | | ancom 460 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)) |
| 12 | | ancom 460 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)) |
| 13 | 11, 12 | bibi12i 339 |
. . . . . . . . 9
⊢ (((𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥 ∧ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
| 14 | 10, 13 | bitri 275 |
. . . . . . . 8
⊢ ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
| 15 | 14 | albii 1819 |
. . . . . . 7
⊢
(∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
| 16 | 9, 15 | bitri 275 |
. . . . . 6
⊢
(∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
| 17 | 16 | albii 1819 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
| 18 | 2, 3, 17 | 3bitr3i 301 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
| 19 | 1, 18 | bitri 275 |
. . 3
⊢ ((dom
𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
| 20 | | eqopab2bw 5553 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ∀𝑥∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))) |
| 21 | | opabresid 6068 |
. . . . 5
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} |
| 22 | 21 | eqcomi 2746 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐴 ∪ ran 𝐴)) |
| 23 | | opabresid 6068 |
. . . . 5
⊢ ( I
↾ (dom 𝐵 ∪ ran
𝐵)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} |
| 24 | 23 | eqcomi 2746 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐵 ∪ ran 𝐵)) |
| 25 | 22, 24 | eqeq12i 2755 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
| 26 | 19, 20, 25 | 3bitr2i 299 |
. 2
⊢ ((dom
𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))) |
| 27 | | relexp0g 15061 |
. . 3
⊢ (𝐴 ∈ 𝑈 → (𝐴↑𝑟0) = ( I ↾
(dom 𝐴 ∪ ran 𝐴))) |
| 28 | | relexp0g 15061 |
. . 3
⊢ (𝐵 ∈ 𝑉 → (𝐵↑𝑟0) = ( I ↾
(dom 𝐵 ∪ ran 𝐵))) |
| 29 | 27, 28 | eqeqan12d 2751 |
. 2
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((𝐴↑𝑟0) = (𝐵↑𝑟0)
↔ ( I ↾ (dom 𝐴
∪ ran 𝐴)) = ( I ↾
(dom 𝐵 ∪ ran 𝐵)))) |
| 30 | 26, 29 | bitr4id 290 |
1
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴↑𝑟0) = (𝐵↑𝑟0))) |