| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre2 | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| pnfnre2 | ⊢ ¬ +∞ ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11284 | . 2 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3037 | 1 ⊢ ¬ +∞ ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2107 ℝcr 11136 +∞cpnf 11274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-pr 5412 ax-un 7737 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nel 3036 df-rab 3420 df-v 3465 df-un 3936 df-in 3938 df-ss 3948 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4888 df-pnf 11279 |
| This theorem is referenced by: nn0xmulclb 32712 |
| Copyright terms: Public domain | W3C validator |