| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre2 | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| pnfnre2 | ⊢ ¬ +∞ ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11153 | . 2 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3034 | 1 ⊢ ¬ +∞ ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ℝcr 11005 +∞cpnf 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 ax-un 7668 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nel 3033 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-pnf 11148 |
| This theorem is referenced by: nn0xmulclb 32754 |
| Copyright terms: Public domain | W3C validator |