| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre2 | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| pnfnre2 | ⊢ ¬ +∞ ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 11156 | . 2 ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli 3031 | 1 ⊢ ¬ +∞ ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ℝcr 11008 +∞cpnf 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pr 5371 ax-un 7671 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nel 3030 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 df-ss 3920 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 df-pnf 11151 |
| This theorem is referenced by: nn0xmulclb 32715 |
| Copyright terms: Public domain | W3C validator |