MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre2 Structured version   Visualization version   GIF version

Theorem pnfnre2 11310
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
pnfnre2 ¬ +∞ ∈ ℝ

Proof of Theorem pnfnre2
StepHypRef Expression
1 pnfnre 11309 . 2 +∞ ∉ ℝ
21neli 3048 1 ¬ +∞ ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  cr 11161  +∞cpnf 11299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-pr 5441  ax-un 7761  ax-resscn 11219
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nel 3047  df-rab 3437  df-v 3483  df-un 3971  df-in 3973  df-ss 3983  df-pw 4610  df-sn 4635  df-pr 4637  df-uni 4916  df-pnf 11304
This theorem is referenced by:  nn0xmulclb  32796
  Copyright terms: Public domain W3C validator