Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfnre2 | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
pnfnre2 | ⊢ ¬ +∞ ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11066 | . 2 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3048 | 1 ⊢ ¬ +∞ ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2104 ℝcr 10920 +∞cpnf 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-resscn 10978 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nel 3047 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-pw 4541 df-sn 4566 df-pr 4568 df-uni 4845 df-pnf 11061 |
This theorem is referenced by: nn0xmulclb 31143 |
Copyright terms: Public domain | W3C validator |