![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnre2 | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
pnfnre2 | ⊢ ¬ +∞ ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11309 | . 2 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3048 | 1 ⊢ ¬ +∞ ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ℝcr 11161 +∞cpnf 11299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-pr 5441 ax-un 7761 ax-resscn 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nel 3047 df-rab 3437 df-v 3483 df-un 3971 df-in 3973 df-ss 3983 df-pw 4610 df-sn 4635 df-pr 4637 df-uni 4916 df-pnf 11304 |
This theorem is referenced by: nn0xmulclb 32796 |
Copyright terms: Public domain | W3C validator |