MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre2 Structured version   Visualization version   GIF version

Theorem pnfnre2 11334
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
pnfnre2 ¬ +∞ ∈ ℝ

Proof of Theorem pnfnre2
StepHypRef Expression
1 pnfnre 11333 . 2 +∞ ∉ ℝ
21neli 3054 1 ¬ +∞ ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  cr 11185  +∞cpnf 11323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-un 7772  ax-resscn 11243
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nel 3053  df-rab 3444  df-v 3490  df-un 3981  df-in 3983  df-ss 3993  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-pnf 11328
This theorem is referenced by:  nn0xmulclb  32780
  Copyright terms: Public domain W3C validator