MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre2 Structured version   Visualization version   GIF version

Theorem pnfnre2 11154
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
pnfnre2 ¬ +∞ ∈ ℝ

Proof of Theorem pnfnre2
StepHypRef Expression
1 pnfnre 11153 . 2 +∞ ∉ ℝ
21neli 3034 1 ¬ +∞ ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2111  cr 11005  +∞cpnf 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368  ax-un 7668  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nel 3033  df-rab 3396  df-v 3438  df-un 3902  df-in 3904  df-ss 3914  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4857  df-pnf 11148
This theorem is referenced by:  nn0xmulclb  32754
  Copyright terms: Public domain W3C validator