MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre2 Structured version   Visualization version   GIF version

Theorem pnfnre2 11216
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
pnfnre2 ¬ +∞ ∈ ℝ

Proof of Theorem pnfnre2
StepHypRef Expression
1 pnfnre 11215 . 2 +∞ ∉ ℝ
21neli 3031 1 ¬ +∞ ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  cr 11067  +∞cpnf 11205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-pr 5387  ax-un 7711  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nel 3030  df-rab 3406  df-v 3449  df-un 3919  df-in 3921  df-ss 3931  df-pw 4565  df-sn 4590  df-pr 4592  df-uni 4872  df-pnf 11210
This theorem is referenced by:  nn0xmulclb  32694
  Copyright terms: Public domain W3C validator