Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfnre2 | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
pnfnre2 | ⊢ ¬ +∞ ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11000 | . 2 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3052 | 1 ⊢ ¬ +∞ ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2109 ℝcr 10854 +∞cpnf 10990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nel 3051 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-pw 4540 df-sn 4567 df-pr 4569 df-uni 4845 df-pnf 10995 |
This theorem is referenced by: nn0xmulclb 31073 |
Copyright terms: Public domain | W3C validator |