![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnre2 | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
pnfnre2 | ⊢ ¬ +∞ ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 11333 | . 2 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3054 | 1 ⊢ ¬ +∞ ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ℝcr 11185 +∞cpnf 11323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-un 7772 ax-resscn 11243 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nel 3053 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-pnf 11328 |
This theorem is referenced by: nn0xmulclb 32780 |
Copyright terms: Public domain | W3C validator |