MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre2 Structured version   Visualization version   GIF version

Theorem pnfnre2 11257
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
pnfnre2 ¬ +∞ ∈ ℝ

Proof of Theorem pnfnre2
StepHypRef Expression
1 pnfnre 11256 . 2 +∞ ∉ ℝ
21neli 3042 1 ¬ +∞ ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2098  cr 11108  +∞cpnf 11246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-pr 5420  ax-un 7721  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nel 3041  df-rab 3427  df-v 3470  df-un 3948  df-in 3950  df-ss 3960  df-pw 4599  df-sn 4624  df-pr 4626  df-uni 4903  df-pnf 11251
This theorem is referenced by:  nn0xmulclb  32489
  Copyright terms: Public domain W3C validator