| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfnre | Structured version Visualization version GIF version | ||
| Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfnre | ⊢ -∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mnf 11272 | . . . . 5 ⊢ -∞ = 𝒫 +∞ | |
| 2 | df-pnf 11271 | . . . . . 6 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 3 | 2 | pweqi 4591 | . . . . 5 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
| 4 | 1, 3 | eqtri 2758 | . . . 4 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
| 5 | 2pwuninel 9146 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ | |
| 6 | 4, 5 | eqneltri 2853 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
| 7 | recn 11219 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
| 8 | 6, 7 | mto 197 | . 2 ⊢ ¬ -∞ ∈ ℝ |
| 9 | 8 | nelir 3039 | 1 ⊢ -∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∉ wnel 3036 𝒫 cpw 4575 ∪ cuni 4883 ℂcc 11127 ℝcr 11128 +∞cpnf 11266 -∞cmnf 11267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 |
| This theorem is referenced by: renemnf 11284 ltxrlt 11305 xrltnr 13135 nltmnf 13145 hashnemnf 14362 mnfnei 23159 deg1nn0clb 26047 mnfnre2 45423 |
| Copyright terms: Public domain | W3C validator |