Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfnre | Structured version Visualization version GIF version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre | ⊢ -∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnf 11000 | . . . . 5 ⊢ -∞ = 𝒫 +∞ | |
2 | df-pnf 10999 | . . . . . 6 ⊢ +∞ = 𝒫 ∪ ℂ | |
3 | 2 | pweqi 4552 | . . . . 5 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
4 | 1, 3 | eqtri 2766 | . . . 4 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
5 | 2pwuninel 8907 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ | |
6 | 4, 5 | eqneltri 2832 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
7 | recn 10949 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
8 | 6, 7 | mto 196 | . 2 ⊢ ¬ -∞ ∈ ℝ |
9 | 8 | nelir 3052 | 1 ⊢ -∞ ∉ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∉ wnel 3049 𝒫 cpw 4534 ∪ cuni 4840 ℂcc 10857 ℝcr 10858 +∞cpnf 10994 -∞cmnf 10995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-resscn 10916 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 |
This theorem is referenced by: renemnf 11012 ltxrlt 11033 xrltnr 12843 nltmnf 12853 hashnemnf 14046 mnfnei 22360 deg1nn0clb 25243 mnfnre2 42895 |
Copyright terms: Public domain | W3C validator |