| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfnre | Structured version Visualization version GIF version | ||
| Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfnre | ⊢ -∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mnf 11298 | . . . . 5 ⊢ -∞ = 𝒫 +∞ | |
| 2 | df-pnf 11297 | . . . . . 6 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 3 | 2 | pweqi 4616 | . . . . 5 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
| 4 | 1, 3 | eqtri 2765 | . . . 4 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
| 5 | 2pwuninel 9172 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ | |
| 6 | 4, 5 | eqneltri 2860 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
| 7 | recn 11245 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
| 8 | 6, 7 | mto 197 | . 2 ⊢ ¬ -∞ ∈ ℝ |
| 9 | 8 | nelir 3049 | 1 ⊢ -∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∉ wnel 3046 𝒫 cpw 4600 ∪ cuni 4907 ℂcc 11153 ℝcr 11154 +∞cpnf 11292 -∞cmnf 11293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 |
| This theorem is referenced by: renemnf 11310 ltxrlt 11331 xrltnr 13161 nltmnf 13171 hashnemnf 14383 mnfnei 23229 deg1nn0clb 26129 mnfnre2 45407 |
| Copyright terms: Public domain | W3C validator |