![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfnre | Structured version Visualization version GIF version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre | ⊢ -∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnf 11327 | . . . . 5 ⊢ -∞ = 𝒫 +∞ | |
2 | df-pnf 11326 | . . . . . 6 ⊢ +∞ = 𝒫 ∪ ℂ | |
3 | 2 | pweqi 4638 | . . . . 5 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
4 | 1, 3 | eqtri 2768 | . . . 4 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
5 | 2pwuninel 9198 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ | |
6 | 4, 5 | eqneltri 2863 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
7 | recn 11274 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
8 | 6, 7 | mto 197 | . 2 ⊢ ¬ -∞ ∈ ℝ |
9 | 8 | nelir 3055 | 1 ⊢ -∞ ∉ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∉ wnel 3052 𝒫 cpw 4622 ∪ cuni 4931 ℂcc 11182 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 |
This theorem is referenced by: renemnf 11339 ltxrlt 11360 xrltnr 13182 nltmnf 13192 hashnemnf 14393 mnfnei 23250 deg1nn0clb 26149 mnfnre2 45311 |
Copyright terms: Public domain | W3C validator |