| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfnre | Structured version Visualization version GIF version | ||
| Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfnre | ⊢ -∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mnf 11149 | . . . . 5 ⊢ -∞ = 𝒫 +∞ | |
| 2 | df-pnf 11148 | . . . . . 6 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 3 | 2 | pweqi 4563 | . . . . 5 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
| 4 | 1, 3 | eqtri 2754 | . . . 4 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
| 5 | 2pwuninel 9045 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ | |
| 6 | 4, 5 | eqneltri 2850 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
| 7 | recn 11096 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
| 8 | 6, 7 | mto 197 | . 2 ⊢ ¬ -∞ ∈ ℝ |
| 9 | 8 | nelir 3035 | 1 ⊢ -∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∉ wnel 3032 𝒫 cpw 4547 ∪ cuni 4856 ℂcc 11004 ℝcr 11005 +∞cpnf 11143 -∞cmnf 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 |
| This theorem is referenced by: renemnf 11161 ltxrlt 11183 xrltnr 13018 nltmnf 13028 hashnemnf 14251 mnfnei 23136 deg1nn0clb 26022 mnfnre2 45442 |
| Copyright terms: Public domain | W3C validator |