Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfnre | Structured version Visualization version GIF version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre | ⊢ -∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnf 11012 | . . . . 5 ⊢ -∞ = 𝒫 +∞ | |
2 | df-pnf 11011 | . . . . . 6 ⊢ +∞ = 𝒫 ∪ ℂ | |
3 | 2 | pweqi 4551 | . . . . 5 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
4 | 1, 3 | eqtri 2766 | . . . 4 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
5 | 2pwuninel 8919 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ | |
6 | 4, 5 | eqneltri 2832 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
7 | recn 10961 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
8 | 6, 7 | mto 196 | . 2 ⊢ ¬ -∞ ∈ ℝ |
9 | 8 | nelir 3052 | 1 ⊢ -∞ ∉ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∉ wnel 3049 𝒫 cpw 4533 ∪ cuni 4839 ℂcc 10869 ℝcr 10870 +∞cpnf 11006 -∞cmnf 11007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 |
This theorem is referenced by: renemnf 11024 ltxrlt 11045 xrltnr 12855 nltmnf 12865 hashnemnf 14058 mnfnei 22372 deg1nn0clb 25255 mnfnre2 42936 |
Copyright terms: Public domain | W3C validator |