![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3045. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neli.1 | ⊢ 𝐴 ∉ 𝐵 |
Ref | Expression |
---|---|
neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
2 | df-nel 3045 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∉ wnel 3044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-nel 3045 |
This theorem is referenced by: alephprc 10137 pnfnre2 11301 renepnf 11307 renemnf 11308 ltxrlt 11329 nn0nepnf 12605 xrltnr 13159 pnfnlt 13168 nltmnf 13169 hashclb 14394 hasheq0 14399 egt2lt3 16239 nthruc 16285 pcgcd1 16911 pc2dvds 16913 ramtcl2 17045 nsmndex1 18939 odhash3 19609 xrsmgmdifsgrp 21439 xrsdsreclblem 21448 topnex 23019 pnfnei 23244 mnfnei 23245 zclmncvs 25196 i1f0rn 25731 deg1nn0clb 26144 rgrx0ndm 29626 rgrx0nd 29627 f1resfz0f1d 35098 gonan0 35377 inaex 44293 mnfnre2 45346 |
Copyright terms: Public domain | W3C validator |