![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3053. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neli.1 | ⊢ 𝐴 ∉ 𝐵 |
Ref | Expression |
---|---|
neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
2 | df-nel 3053 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∉ wnel 3052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-nel 3053 |
This theorem is referenced by: alephprc 10168 pnfnre2 11332 renepnf 11338 renemnf 11339 ltxrlt 11360 nn0nepnf 12633 xrltnr 13182 pnfnlt 13191 nltmnf 13192 hashclb 14407 hasheq0 14412 egt2lt3 16254 nthruc 16300 pcgcd1 16924 pc2dvds 16926 ramtcl2 17058 nsmndex1 18948 odhash3 19618 xrsmgmdifsgrp 21444 xrsdsreclblem 21453 topnex 23024 pnfnei 23249 mnfnei 23250 zclmncvs 25201 i1f0rn 25736 deg1nn0clb 26149 rgrx0ndm 29629 rgrx0nd 29630 f1resfz0f1d 35081 gonan0 35360 inaex 44266 mnfnre2 45311 |
Copyright terms: Public domain | W3C validator |