| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3030. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neli.1 | ⊢ 𝐴 ∉ 𝐵 |
| Ref | Expression |
|---|---|
| neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
| 2 | df-nel 3030 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3030 |
| This theorem is referenced by: alephprc 9993 pnfnre2 11157 renepnf 11163 renemnf 11164 ltxrlt 11186 nn0nepnf 12465 xrltnr 13021 pnfnlt 13030 nltmnf 13031 hashclb 14265 hasheq0 14270 egt2lt3 16115 nthruc 16161 pcgcd1 16789 pc2dvds 16791 ramtcl2 16923 nsmndex1 18787 odhash3 19455 xrsmgmdifsgrp 21315 xrsdsreclblem 21319 topnex 22881 pnfnei 23105 mnfnei 23106 zclmncvs 25046 i1f0rn 25581 deg1nn0clb 25993 rgrx0ndm 29539 rgrx0nd 29540 trisecnconstr 33765 f1resfz0f1d 35097 gonan0 35375 inaex 44280 mnfnre2 45385 fonex 48861 |
| Copyright terms: Public domain | W3C validator |