| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3031. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neli.1 | ⊢ 𝐴 ∉ 𝐵 |
| Ref | Expression |
|---|---|
| neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
| 2 | df-nel 3031 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3031 |
| This theorem is referenced by: alephprc 10059 pnfnre2 11223 renepnf 11229 renemnf 11230 ltxrlt 11251 nn0nepnf 12530 xrltnr 13086 pnfnlt 13095 nltmnf 13096 hashclb 14330 hasheq0 14335 egt2lt3 16181 nthruc 16227 pcgcd1 16855 pc2dvds 16857 ramtcl2 16989 nsmndex1 18847 odhash3 19513 xrsmgmdifsgrp 21327 xrsdsreclblem 21336 topnex 22890 pnfnei 23114 mnfnei 23115 zclmncvs 25055 i1f0rn 25590 deg1nn0clb 26002 rgrx0ndm 29528 rgrx0nd 29529 trisecnconstr 33789 f1resfz0f1d 35108 gonan0 35386 inaex 44293 mnfnre2 45399 fonex 48859 |
| Copyright terms: Public domain | W3C validator |