![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3075. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neli.1 | ⊢ 𝐴 ∉ 𝐵 |
Ref | Expression |
---|---|
neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
2 | df-nel 3075 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbi 222 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2157 ∉ wnel 3074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-nel 3075 |
This theorem is referenced by: alephprc 9208 renepnf 10376 renemnf 10377 ltxrlt 10398 nn0nepnf 11660 xrltnr 12200 pnfnlt 12209 nltmnf 12210 hashclb 13399 hasheq0 13404 egt2lt3 15270 nthruc 15317 pcgcd1 15914 pc2dvds 15916 ramtcl2 16048 odhash3 18304 xrsmgmdifsgrp 20105 xrsdsreclblem 20114 topnex 21129 pnfnei 21353 mnfnei 21354 zclmncvs 23275 i1f0rn 23790 deg1nn0clb 24191 rgrx0ndm 26843 rgrx0nd 26844 mnfnre2 40362 pnfnre2 40371 |
Copyright terms: Public domain | W3C validator |