| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3030. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neli.1 | ⊢ 𝐴 ∉ 𝐵 |
| Ref | Expression |
|---|---|
| neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
| 2 | df-nel 3030 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3030 |
| This theorem is referenced by: alephprc 10052 pnfnre2 11216 renepnf 11222 renemnf 11223 ltxrlt 11244 nn0nepnf 12523 xrltnr 13079 pnfnlt 13088 nltmnf 13089 hashclb 14323 hasheq0 14328 egt2lt3 16174 nthruc 16220 pcgcd1 16848 pc2dvds 16850 ramtcl2 16982 nsmndex1 18840 odhash3 19506 xrsmgmdifsgrp 21320 xrsdsreclblem 21329 topnex 22883 pnfnei 23107 mnfnei 23108 zclmncvs 25048 i1f0rn 25583 deg1nn0clb 25995 rgrx0ndm 29521 rgrx0nd 29522 trisecnconstr 33782 f1resfz0f1d 35101 gonan0 35379 inaex 44286 mnfnre2 45392 fonex 48855 |
| Copyright terms: Public domain | W3C validator |