| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3037. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neli.1 | ⊢ 𝐴 ∉ 𝐵 |
| Ref | Expression |
|---|---|
| neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
| 2 | df-nel 3037 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ∉ wnel 3036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3037 |
| This theorem is referenced by: alephprc 10113 pnfnre2 11277 renepnf 11283 renemnf 11284 ltxrlt 11305 nn0nepnf 12582 xrltnr 13135 pnfnlt 13144 nltmnf 13145 hashclb 14376 hasheq0 14381 egt2lt3 16224 nthruc 16270 pcgcd1 16897 pc2dvds 16899 ramtcl2 17031 nsmndex1 18891 odhash3 19557 xrsmgmdifsgrp 21371 xrsdsreclblem 21380 topnex 22934 pnfnei 23158 mnfnei 23159 zclmncvs 25100 i1f0rn 25635 deg1nn0clb 26047 rgrx0ndm 29573 rgrx0nd 29574 f1resfz0f1d 35136 gonan0 35414 inaex 44321 mnfnre2 45423 fonex 48842 |
| Copyright terms: Public domain | W3C validator |