Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3040. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neli.1 | ⊢ 𝐴 ∉ 𝐵 |
Ref | Expression |
---|---|
neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
2 | df-nel 3040 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbi 233 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2114 ∉ wnel 3039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-nel 3040 |
This theorem is referenced by: alephprc 9602 pnfnre2 10764 renepnf 10770 renemnf 10771 ltxrlt 10792 nn0nepnf 12059 xrltnr 12600 pnfnlt 12609 nltmnf 12610 hashclb 13814 hasheq0 13819 egt2lt3 15654 nthruc 15700 pcgcd1 16316 pc2dvds 16318 ramtcl2 16450 nsmndex1 18197 odhash3 18822 xrsmgmdifsgrp 20257 xrsdsreclblem 20266 topnex 21750 pnfnei 21974 mnfnei 21975 zclmncvs 23903 i1f0rn 24437 deg1nn0clb 24846 rgrx0ndm 27538 rgrx0nd 27539 f1resfz0f1d 32646 gonan0 32928 inaex 41480 mnfnre2 42497 |
Copyright terms: Public domain | W3C validator |