| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3030. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neli.1 | ⊢ 𝐴 ∉ 𝐵 |
| Ref | Expression |
|---|---|
| neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
| 2 | df-nel 3030 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3030 |
| This theorem is referenced by: alephprc 10028 pnfnre2 11192 renepnf 11198 renemnf 11199 ltxrlt 11220 nn0nepnf 12499 xrltnr 13055 pnfnlt 13064 nltmnf 13065 hashclb 14299 hasheq0 14304 egt2lt3 16150 nthruc 16196 pcgcd1 16824 pc2dvds 16826 ramtcl2 16958 nsmndex1 18822 odhash3 19490 xrsmgmdifsgrp 21350 xrsdsreclblem 21354 topnex 22916 pnfnei 23140 mnfnei 23141 zclmncvs 25081 i1f0rn 25616 deg1nn0clb 26028 rgrx0ndm 29574 rgrx0nd 29575 trisecnconstr 33775 f1resfz0f1d 35094 gonan0 35372 inaex 44279 mnfnre2 45385 fonex 48848 |
| Copyright terms: Public domain | W3C validator |