Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3049. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neli.1 | ⊢ 𝐴 ∉ 𝐵 |
Ref | Expression |
---|---|
neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
2 | df-nel 3049 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∉ wnel 3048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3049 |
This theorem is referenced by: alephprc 9786 pnfnre2 10948 renepnf 10954 renemnf 10955 ltxrlt 10976 nn0nepnf 12243 xrltnr 12784 pnfnlt 12793 nltmnf 12794 hashclb 14001 hasheq0 14006 egt2lt3 15843 nthruc 15889 pcgcd1 16506 pc2dvds 16508 ramtcl2 16640 nsmndex1 18467 odhash3 19096 xrsmgmdifsgrp 20547 xrsdsreclblem 20556 topnex 22054 pnfnei 22279 mnfnei 22280 zclmncvs 24217 i1f0rn 24751 deg1nn0clb 25160 rgrx0ndm 27863 rgrx0nd 27864 f1resfz0f1d 32972 gonan0 33254 inaex 41804 mnfnre2 42826 |
Copyright terms: Public domain | W3C validator |