![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3046. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neli.1 | ⊢ 𝐴 ∉ 𝐵 |
Ref | Expression |
---|---|
neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
2 | df-nel 3046 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 ∉ wnel 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3046 |
This theorem is referenced by: alephprc 10100 pnfnre2 11263 renepnf 11269 renemnf 11270 ltxrlt 11291 nn0nepnf 12559 xrltnr 13106 pnfnlt 13115 nltmnf 13116 hashclb 14325 hasheq0 14330 egt2lt3 16156 nthruc 16202 pcgcd1 16817 pc2dvds 16819 ramtcl2 16951 nsmndex1 18836 odhash3 19492 xrsmgmdifsgrp 21270 xrsdsreclblem 21279 topnex 22818 pnfnei 23043 mnfnei 23044 zclmncvs 24995 i1f0rn 25530 deg1nn0clb 25945 rgrx0ndm 29282 rgrx0nd 29283 f1resfz0f1d 34566 gonan0 34846 inaex 43518 mnfnre2 44564 |
Copyright terms: Public domain | W3C validator |