| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neli | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3033. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neli.1 | ⊢ 𝐴 ∉ 𝐵 |
| Ref | Expression |
|---|---|
| neli | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neli.1 | . 2 ⊢ 𝐴 ∉ 𝐵 | |
| 2 | df-nel 3033 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ∉ wnel 3032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3033 |
| This theorem is referenced by: alephprc 9990 pnfnre2 11154 renepnf 11160 renemnf 11161 ltxrlt 11183 nn0nepnf 12462 xrltnr 13018 pnfnlt 13027 nltmnf 13028 hashclb 14265 hasheq0 14270 egt2lt3 16115 nthruc 16161 pcgcd1 16789 pc2dvds 16791 ramtcl2 16923 nsmndex1 18821 odhash3 19488 xrsmgmdifsgrp 21345 xrsdsreclblem 21349 topnex 22911 pnfnei 23135 mnfnei 23136 zclmncvs 25075 i1f0rn 25610 deg1nn0clb 26022 rgrx0ndm 29572 rgrx0nd 29573 trisecnconstr 33805 f1resfz0f1d 35158 gonan0 35436 inaex 44400 mnfnre2 45504 fonex 48977 |
| Copyright terms: Public domain | W3C validator |