MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  po3nr Structured version   Visualization version   GIF version

Theorem po3nr 5581
Description: A partial order has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po3nr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))

Proof of Theorem po3nr
StepHypRef Expression
1 po2nr 5580 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐷𝐷𝑅𝐵))
213adantr2 1171 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐷𝐷𝑅𝐵))
3 df-3an 1088 . . 3 ((𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵) ↔ ((𝐵𝑅𝐶𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵))
4 potr 5579 . . . 4 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
54anim1d 611 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (((𝐵𝑅𝐶𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵) → (𝐵𝑅𝐷𝐷𝑅𝐵)))
63, 5biimtrid 242 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵) → (𝐵𝑅𝐷𝐷𝑅𝐵)))
72, 6mtod 198 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5124   Po wpo 5564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-po 5566
This theorem is referenced by:  so3nr  5595
  Copyright terms: Public domain W3C validator