MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  po3nr Structured version   Visualization version   GIF version

Theorem po3nr 5509
Description: A partial order has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po3nr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))

Proof of Theorem po3nr
StepHypRef Expression
1 po2nr 5508 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐷𝐷𝑅𝐵))
213adantr2 1168 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐷𝐷𝑅𝐵))
3 df-3an 1087 . . 3 ((𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵) ↔ ((𝐵𝑅𝐶𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵))
4 potr 5507 . . . 4 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
54anim1d 610 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (((𝐵𝑅𝐶𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵) → (𝐵𝑅𝐷𝐷𝑅𝐵)))
63, 5syl5bi 241 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵) → (𝐵𝑅𝐷𝐷𝑅𝐵)))
72, 6mtod 197 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085  wcel 2108   class class class wbr 5070   Po wpo 5492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-po 5494
This theorem is referenced by:  so3nr  5521
  Copyright terms: Public domain W3C validator