| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r2 1184 po3nr 5576 funcnvqp 6600 sornom 10291 axdclem2 10534 fzadd2 13576 issubc3 17862 funcestrcsetclem9 18160 funcsetcestrclem9 18175 pgpfi 19586 imasrng 20137 imasring 20290 prdslmodd 20926 icoopnst 24887 iocopnst 24888 axcontlem4 28946 nvmdi 30629 mdsl3 32297 elicc3 36335 iscringd 38022 erngdvlem3 41009 erngdvlem3-rN 41017 dvalveclem 41044 dvhlveclem 41127 dvmptfprodlem 45973 smflimlem4 46803 funcringcsetcALTV2lem9 48273 funcringcsetclem9ALTV 48296 |
| Copyright terms: Public domain | W3C validator |