![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1149 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3adant3r2 1183 po3nr 5623 funcnvqp 6642 sornom 10346 axdclem2 10589 fzadd2 13619 issubc3 17913 funcestrcsetclem9 18217 funcsetcestrclem9 18232 pgpfi 19647 imasrng 20204 imasring 20353 prdslmodd 20990 icoopnst 24988 iocopnst 24989 axcontlem4 29000 nvmdi 30680 mdsl3 32348 elicc3 36283 iscringd 37958 erngdvlem3 40947 erngdvlem3-rN 40955 dvalveclem 40982 dvhlveclem 41065 dvmptfprodlem 45865 smflimlem4 46695 funcringcsetcALTV2lem9 48021 funcringcsetclem9ALTV 48044 |
Copyright terms: Public domain | W3C validator |