| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r2 1184 po3nr 5564 funcnvqp 6583 sornom 10237 axdclem2 10480 fzadd2 13527 issubc3 17818 funcestrcsetclem9 18116 funcsetcestrclem9 18131 pgpfi 19542 imasrng 20093 imasring 20246 prdslmodd 20882 icoopnst 24843 iocopnst 24844 axcontlem4 28901 nvmdi 30584 mdsl3 32252 elicc3 36312 iscringd 37999 erngdvlem3 40991 erngdvlem3-rN 40999 dvalveclem 41026 dvhlveclem 41109 dvmptfprodlem 45949 smflimlem4 46779 funcringcsetcALTV2lem9 48290 funcringcsetclem9ALTV 48313 |
| Copyright terms: Public domain | W3C validator |