Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1147 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3adant3r2 1181 po3nr 5509 funcnvqp 6482 sornom 9964 axdclem2 10207 fzadd2 13220 issubc3 17480 funcestrcsetclem9 17781 funcsetcestrclem9 17796 pgpfi 19125 imasring 19773 prdslmodd 20146 icoopnst 24008 iocopnst 24009 axcontlem4 27238 nvmdi 28911 mdsl3 30579 elicc3 34433 iscringd 36083 erngdvlem3 38931 erngdvlem3-rN 38939 dvalveclem 38966 dvhlveclem 39049 dvmptfprodlem 43375 smflimlem4 44196 funcringcsetcALTV2lem9 45490 funcringcsetclem9ALTV 45513 |
Copyright terms: Public domain | W3C validator |