| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r2 1184 po3nr 5554 funcnvqp 6564 sornom 10206 axdclem2 10449 fzadd2 13496 issubc3 17787 funcestrcsetclem9 18085 funcsetcestrclem9 18100 pgpfi 19511 imasrng 20062 imasring 20215 prdslmodd 20851 icoopnst 24812 iocopnst 24813 axcontlem4 28870 nvmdi 30550 mdsl3 32218 elicc3 36278 iscringd 37965 erngdvlem3 40957 erngdvlem3-rN 40965 dvalveclem 40992 dvhlveclem 41075 dvmptfprodlem 45915 smflimlem4 46745 funcringcsetcALTV2lem9 48259 funcringcsetclem9ALTV 48282 |
| Copyright terms: Public domain | W3C validator |