MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr2 Structured version   Visualization version   GIF version

Theorem 3adantr2 1171
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adantr2
StepHypRef Expression
1 3simpb 1149 . 2 ((𝜓𝜏𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r2  1184  po3nr  5576  funcnvqp  6600  sornom  10291  axdclem2  10534  fzadd2  13576  issubc3  17862  funcestrcsetclem9  18160  funcsetcestrclem9  18175  pgpfi  19586  imasrng  20137  imasring  20290  prdslmodd  20926  icoopnst  24887  iocopnst  24888  axcontlem4  28946  nvmdi  30629  mdsl3  32297  elicc3  36335  iscringd  38022  erngdvlem3  41009  erngdvlem3-rN  41017  dvalveclem  41044  dvhlveclem  41127  dvmptfprodlem  45973  smflimlem4  46803  funcringcsetcALTV2lem9  48273  funcringcsetclem9ALTV  48296
  Copyright terms: Public domain W3C validator