| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r2 1184 po3nr 5534 funcnvqp 6540 sornom 10163 axdclem2 10406 fzadd2 13454 issubc3 17751 funcestrcsetclem9 18049 funcsetcestrclem9 18064 pgpfi 19512 imasrng 20090 imasring 20243 prdslmodd 20897 icoopnst 24858 iocopnst 24859 axcontlem4 28940 nvmdi 30620 mdsl3 32288 elicc3 36351 iscringd 38038 erngdvlem3 41029 erngdvlem3-rN 41037 dvalveclem 41064 dvhlveclem 41147 dvmptfprodlem 45982 smflimlem4 46812 funcringcsetcALTV2lem9 48329 funcringcsetclem9ALTV 48352 |
| Copyright terms: Public domain | W3C validator |