Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1148 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3adant3r2 1182 po3nr 5518 funcnvqp 6498 sornom 10033 axdclem2 10276 fzadd2 13291 issubc3 17564 funcestrcsetclem9 17865 funcsetcestrclem9 17880 pgpfi 19210 imasring 19858 prdslmodd 20231 icoopnst 24102 iocopnst 24103 axcontlem4 27335 nvmdi 29010 mdsl3 30678 elicc3 34506 iscringd 36156 erngdvlem3 39004 erngdvlem3-rN 39012 dvalveclem 39039 dvhlveclem 39122 dvmptfprodlem 43485 smflimlem4 44309 funcringcsetcALTV2lem9 45602 funcringcsetclem9ALTV 45625 |
Copyright terms: Public domain | W3C validator |