![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1148 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3adant3r2 1182 po3nr 5611 funcnvqp 6631 sornom 10314 axdclem2 10557 fzadd2 13595 issubc3 17899 funcestrcsetclem9 18203 funcsetcestrclem9 18218 pgpfi 19637 imasrng 20194 imasring 20343 prdslmodd 20984 icoopnst 24982 iocopnst 24983 axcontlem4 28996 nvmdi 30676 mdsl3 32344 elicc3 36299 iscringd 37984 erngdvlem3 40972 erngdvlem3-rN 40980 dvalveclem 41007 dvhlveclem 41090 dvmptfprodlem 45899 smflimlem4 46729 funcringcsetcALTV2lem9 48141 funcringcsetclem9ALTV 48164 |
Copyright terms: Public domain | W3C validator |