MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr2 Structured version   Visualization version   GIF version

Theorem 3adantr2 1168
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adantr2
StepHypRef Expression
1 3simpb 1147 . 2 ((𝜓𝜏𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 592 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  3adant3r2  1181  po3nr  5509  funcnvqp  6482  sornom  9964  axdclem2  10207  fzadd2  13220  issubc3  17480  funcestrcsetclem9  17781  funcsetcestrclem9  17796  pgpfi  19125  imasring  19773  prdslmodd  20146  icoopnst  24008  iocopnst  24009  axcontlem4  27238  nvmdi  28911  mdsl3  30579  elicc3  34433  iscringd  36083  erngdvlem3  38931  erngdvlem3-rN  38939  dvalveclem  38966  dvhlveclem  39049  dvmptfprodlem  43375  smflimlem4  44196  funcringcsetcALTV2lem9  45490  funcringcsetclem9ALTV  45513
  Copyright terms: Public domain W3C validator