| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r2 1184 po3nr 5544 funcnvqp 6553 sornom 10179 axdclem2 10422 fzadd2 13466 issubc3 17764 funcestrcsetclem9 18062 funcsetcestrclem9 18077 pgpfi 19525 imasrng 20103 imasring 20257 prdslmodd 20911 icoopnst 24883 iocopnst 24884 axcontlem4 28966 nvmdi 30649 mdsl3 32317 elicc3 36433 iscringd 38111 erngdvlem3 41162 erngdvlem3-rN 41170 dvalveclem 41197 dvhlveclem 41280 dvmptfprodlem 46104 smflimlem4 46934 funcringcsetcALTV2lem9 48460 funcringcsetclem9ALTV 48483 |
| Copyright terms: Public domain | W3C validator |