MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr2 Structured version   Visualization version   GIF version

Theorem 3adantr2 1169
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adantr2
StepHypRef Expression
1 3simpb 1148 . 2 ((𝜓𝜏𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r2  1182  po3nr  5611  funcnvqp  6631  sornom  10314  axdclem2  10557  fzadd2  13595  issubc3  17899  funcestrcsetclem9  18203  funcsetcestrclem9  18218  pgpfi  19637  imasrng  20194  imasring  20343  prdslmodd  20984  icoopnst  24982  iocopnst  24983  axcontlem4  28996  nvmdi  30676  mdsl3  32344  elicc3  36299  iscringd  37984  erngdvlem3  40972  erngdvlem3-rN  40980  dvalveclem  41007  dvhlveclem  41090  dvmptfprodlem  45899  smflimlem4  46729  funcringcsetcALTV2lem9  48141  funcringcsetclem9ALTV  48164
  Copyright terms: Public domain W3C validator