| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r2 1184 po3nr 5561 funcnvqp 6580 sornom 10230 axdclem2 10473 fzadd2 13520 issubc3 17811 funcestrcsetclem9 18109 funcsetcestrclem9 18124 pgpfi 19535 imasrng 20086 imasring 20239 prdslmodd 20875 icoopnst 24836 iocopnst 24837 axcontlem4 28894 nvmdi 30577 mdsl3 32245 elicc3 36305 iscringd 37992 erngdvlem3 40984 erngdvlem3-rN 40992 dvalveclem 41019 dvhlveclem 41102 dvmptfprodlem 45942 smflimlem4 46772 funcringcsetcALTV2lem9 48286 funcringcsetclem9ALTV 48309 |
| Copyright terms: Public domain | W3C validator |