MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr2 Structured version   Visualization version   GIF version

Theorem 3adantr2 1171
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adantr2
StepHypRef Expression
1 3simpb 1149 . 2 ((𝜓𝜏𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r2  1184  po3nr  5546  funcnvqp  6550  sornom  10190  axdclem2  10433  fzadd2  13481  issubc3  17775  funcestrcsetclem9  18073  funcsetcestrclem9  18088  pgpfi  19503  imasrng  20081  imasring  20234  prdslmodd  20891  icoopnst  24853  iocopnst  24854  axcontlem4  28931  nvmdi  30611  mdsl3  32279  elicc3  36310  iscringd  37997  erngdvlem3  40989  erngdvlem3-rN  40997  dvalveclem  41024  dvhlveclem  41107  dvmptfprodlem  45945  smflimlem4  46775  funcringcsetcALTV2lem9  48302  funcringcsetclem9ALTV  48325
  Copyright terms: Public domain W3C validator