| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r2 1184 po3nr 5546 funcnvqp 6550 sornom 10190 axdclem2 10433 fzadd2 13481 issubc3 17775 funcestrcsetclem9 18073 funcsetcestrclem9 18088 pgpfi 19503 imasrng 20081 imasring 20234 prdslmodd 20891 icoopnst 24853 iocopnst 24854 axcontlem4 28931 nvmdi 30611 mdsl3 32279 elicc3 36310 iscringd 37997 erngdvlem3 40989 erngdvlem3-rN 40997 dvalveclem 41024 dvhlveclem 41107 dvmptfprodlem 45945 smflimlem4 46775 funcringcsetcALTV2lem9 48302 funcringcsetclem9ALTV 48325 |
| Copyright terms: Public domain | W3C validator |