MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr2 Structured version   Visualization version   GIF version

Theorem 3adantr2 1171
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adantr2
StepHypRef Expression
1 3simpb 1149 . 2 ((𝜓𝜏𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3adant3r2  1184  po3nr  5534  funcnvqp  6540  sornom  10163  axdclem2  10406  fzadd2  13454  issubc3  17751  funcestrcsetclem9  18049  funcsetcestrclem9  18064  pgpfi  19512  imasrng  20090  imasring  20243  prdslmodd  20897  icoopnst  24858  iocopnst  24859  axcontlem4  28940  nvmdi  30620  mdsl3  32288  elicc3  36351  iscringd  38038  erngdvlem3  41029  erngdvlem3-rN  41037  dvalveclem  41064  dvhlveclem  41147  dvmptfprodlem  45982  smflimlem4  46812  funcringcsetcALTV2lem9  48329  funcringcsetclem9ALTV  48352
  Copyright terms: Public domain W3C validator