Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1147 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3adant3r2 1181 po3nr 5517 funcnvqp 6494 sornom 10017 axdclem2 10260 fzadd2 13273 issubc3 17545 funcestrcsetclem9 17846 funcsetcestrclem9 17861 pgpfi 19191 imasring 19839 prdslmodd 20212 icoopnst 24083 iocopnst 24084 axcontlem4 27316 nvmdi 28989 mdsl3 30657 elicc3 34485 iscringd 36135 erngdvlem3 38983 erngdvlem3-rN 38991 dvalveclem 39018 dvhlveclem 39101 dvmptfprodlem 43439 smflimlem4 44260 funcringcsetcALTV2lem9 45554 funcringcsetclem9ALTV 45577 |
Copyright terms: Public domain | W3C validator |