MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr2 Structured version   Visualization version   GIF version

Theorem 3adantr2 1170
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adantr2
StepHypRef Expression
1 3simpb 1149 . 2 ((𝜓𝜏𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 593 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  3adant3r2  1183  po3nr  5603  funcnvqp  6612  sornom  10271  axdclem2  10514  fzadd2  13535  issubc3  17798  funcestrcsetclem9  18099  funcsetcestrclem9  18114  pgpfi  19472  imasring  20142  prdslmodd  20579  icoopnst  24454  iocopnst  24455  axcontlem4  28222  nvmdi  29896  mdsl3  31564  elicc3  35197  iscringd  36861  erngdvlem3  39856  erngdvlem3-rN  39864  dvalveclem  39891  dvhlveclem  39974  dvmptfprodlem  44650  smflimlem4  45480  imasrng  46668  funcringcsetcALTV2lem9  46932  funcringcsetclem9ALTV  46955
  Copyright terms: Public domain W3C validator