![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > po2nr | Structured version Visualization version GIF version |
Description: A partial order has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
po2nr | ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poirr 5620 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
2 | 1 | adantrr 716 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
3 | potr 5621 | . . . . . 6 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)) | |
4 | 3 | 3exp2 1354 | . . . . 5 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵))))) |
5 | 4 | com34 91 | . . . 4 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵))))) |
6 | 5 | pm2.43d 53 | . . 3 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)))) |
7 | 6 | imp32 418 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)) |
8 | 2, 7 | mtod 198 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 Po wpo 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-po 5607 |
This theorem is referenced by: po3nr 5623 so2nr 5635 soisoi 7364 poxp2 8184 poxp3 8191 wemaplem2 9616 pospo 18415 poprelb 47398 |
Copyright terms: Public domain | W3C validator |