MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  po2nr Structured version   Visualization version   GIF version

Theorem po2nr 5605
Description: A partial order has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po2nr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))

Proof of Theorem po2nr
StepHypRef Expression
1 poirr 5603 . . 3 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 717 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
3 potr 5604 . . . . . 6 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))
433exp2 1354 . . . . 5 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐶𝐴 → (𝐵𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵)))))
54com34 91 . . . 4 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐵𝐴 → (𝐶𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵)))))
65pm2.43d 53 . . 3 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐶𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))))
76imp32 418 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))
82, 7mtod 198 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2107   class class class wbr 5142   Po wpo 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-po 5591
This theorem is referenced by:  po3nr  5606  so2nr  5619  soisoi  7349  poxp2  8169  poxp3  8176  wemaplem2  9588  pospo  18391  poprelb  47516
  Copyright terms: Public domain W3C validator