MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  po2nr Structured version   Visualization version   GIF version

Theorem po2nr 5536
Description: A partial order has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po2nr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))

Proof of Theorem po2nr
StepHypRef Expression
1 poirr 5534 . . 3 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 717 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
3 potr 5535 . . . . . 6 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))
433exp2 1355 . . . . 5 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐶𝐴 → (𝐵𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵)))))
54com34 91 . . . 4 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐵𝐴 → (𝐶𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵)))))
65pm2.43d 53 . . 3 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐶𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))))
76imp32 418 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))
82, 7mtod 198 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2110   class class class wbr 5089   Po wpo 5520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-po 5522
This theorem is referenced by:  po3nr  5537  so2nr  5550  soisoi  7257  poxp2  8068  poxp3  8075  wemaplem2  9428  pospo  18241  poprelb  47534
  Copyright terms: Public domain W3C validator