| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > potr | Structured version Visualization version GIF version | ||
| Description: A partial order is a transitive relation. (Contributed by NM, 27-Mar-1997.) |
| Ref | Expression |
|---|---|
| potr | ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pocl 5530 | . . 3 ⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷))) |
| 3 | 2 | simprd 495 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 Po wpo 5520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-po 5522 |
| This theorem is referenced by: po2nr 5536 po3nr 5537 pofun 5540 sotr 5547 poltletr 6078 frpomin 6287 poxp 8058 poxp2 8073 poxp3 8080 poseq 8088 fprlem2 8231 frfi 9169 wemaplem2 9433 sornom 10168 zorn2lem7 10393 pospo 18249 chnub 18528 pocnv 35807 weiunpo 36507 seqpo 37795 oneptr 43296 |
| Copyright terms: Public domain | W3C validator |