Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxpr Structured version   Visualization version   GIF version

Theorem wfaxpr 44981
Description: The class of well-founded sets models the Axiom of Pairing ax-pr 5382. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxpr 𝑥𝑊𝑦𝑊𝑧𝑊𝑤𝑊 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝑦,𝑊,𝑧
Allowed substitution hints:   𝑊(𝑥,𝑤)

Proof of Theorem wfaxpr
StepHypRef Expression
1 prwf 9740 . . . 4 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
2 wfax.1 . . . . . 6 𝑊 = (𝑅1 “ On)
32eleq2i 2820 . . . . 5 (𝑥𝑊𝑥 (𝑅1 “ On))
42eleq2i 2820 . . . . 5 (𝑦𝑊𝑦 (𝑅1 “ On))
53, 4anbi12i 628 . . . 4 ((𝑥𝑊𝑦𝑊) ↔ (𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)))
62eleq2i 2820 . . . 4 ({𝑥, 𝑦} ∈ 𝑊 ↔ {𝑥, 𝑦} ∈ (𝑅1 “ On))
71, 5, 63imtr4i 292 . . 3 ((𝑥𝑊𝑦𝑊) → {𝑥, 𝑦} ∈ 𝑊)
87rgen2 3175 . 2 𝑥𝑊𝑦𝑊 {𝑥, 𝑦} ∈ 𝑊
9 prclaxpr 44968 . 2 (∀𝑥𝑊𝑦𝑊 {𝑥, 𝑦} ∈ 𝑊 → ∀𝑥𝑊𝑦𝑊𝑧𝑊𝑤𝑊 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
108, 9ax-mp 5 1 𝑥𝑊𝑦𝑊𝑧𝑊𝑤𝑊 ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {cpr 4587   cuni 4867  cima 5634  Oncon0 6320  𝑅1cr1 9691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator