| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinf2 | Structured version Visualization version GIF version | ||
| Description: The converse of isinf 9160. Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020.) |
| Ref | Expression |
|---|---|
| isinf2 | ⊢ (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg 8933 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
| 2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) |
| 3 | domen1 9043 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝑛 → (𝑥 ≼ 𝐴 ↔ 𝑛 ≼ 𝐴)) | |
| 4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ≼ 𝐴 ↔ 𝑛 ≼ 𝐴)) |
| 5 | 2, 4 | sylibd 239 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ⊆ 𝐴 → 𝑛 ≼ 𝐴)) |
| 6 | 5 | expimpd 453 | . . . . . 6 ⊢ (𝐴 ∈ V → ((𝑥 ≈ 𝑛 ∧ 𝑥 ⊆ 𝐴) → 𝑛 ≼ 𝐴)) |
| 7 | 6 | ancomsd 465 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → 𝑛 ≼ 𝐴)) |
| 8 | 7 | exlimdv 1934 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → 𝑛 ≼ 𝐴)) |
| 9 | 8 | ralimdv 3147 | . . 3 ⊢ (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ∀𝑛 ∈ ω 𝑛 ≼ 𝐴)) |
| 10 | domalom 37521 | . . 3 ⊢ (∀𝑛 ∈ ω 𝑛 ≼ 𝐴 → ¬ 𝐴 ∈ Fin) | |
| 11 | 9, 10 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin)) |
| 12 | prcnel 3463 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ Fin) | |
| 13 | 12 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin)) |
| 14 | 11, 13 | pm2.61i 182 | 1 ⊢ (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 ωcom 7805 ≈ cen 8876 ≼ cdom 8877 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-om 7806 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 |
| This theorem is referenced by: ctbssinf 37523 |
| Copyright terms: Public domain | W3C validator |