Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinf2 Structured version   Visualization version   GIF version

Theorem isinf2 35576
Description: The converse of isinf 9036. Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
isinf2 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinf2
StepHypRef Expression
1 ssdomg 8786 . . . . . . . . 9 (𝐴 ∈ V → (𝑥𝐴𝑥𝐴))
21adantr 481 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑥𝐴))
3 domen1 8906 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝐴𝑛𝐴))
43adantl 482 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑛𝐴))
52, 4sylibd 238 . . . . . . 7 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑛𝐴))
65expimpd 454 . . . . . 6 (𝐴 ∈ V → ((𝑥𝑛𝑥𝐴) → 𝑛𝐴))
76ancomsd 466 . . . . 5 (𝐴 ∈ V → ((𝑥𝐴𝑥𝑛) → 𝑛𝐴))
87exlimdv 1936 . . . 4 (𝐴 ∈ V → (∃𝑥(𝑥𝐴𝑥𝑛) → 𝑛𝐴))
98ralimdv 3109 . . 3 (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ∀𝑛 ∈ ω 𝑛𝐴))
10 domalom 35575 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
119, 10syl6 35 . 2 (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin))
12 prcnel 3455 . . 3 𝐴 ∈ V → ¬ 𝐴 ∈ Fin)
1312a1d 25 . 2 𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin))
1411, 13pm2.61i 182 1 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wex 1782  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074  ωcom 7712  cen 8730  cdom 8731  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  ctbssinf  35577
  Copyright terms: Public domain W3C validator