| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinf2 | Structured version Visualization version GIF version | ||
| Description: The converse of isinf 9165. Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020.) |
| Ref | Expression |
|---|---|
| isinf2 | ⊢ (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg 8932 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
| 2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) |
| 3 | domen1 9043 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝑛 → (𝑥 ≼ 𝐴 ↔ 𝑛 ≼ 𝐴)) | |
| 4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ≼ 𝐴 ↔ 𝑛 ≼ 𝐴)) |
| 5 | 2, 4 | sylibd 239 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ⊆ 𝐴 → 𝑛 ≼ 𝐴)) |
| 6 | 5 | expimpd 453 | . . . . . 6 ⊢ (𝐴 ∈ V → ((𝑥 ≈ 𝑛 ∧ 𝑥 ⊆ 𝐴) → 𝑛 ≼ 𝐴)) |
| 7 | 6 | ancomsd 465 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → 𝑛 ≼ 𝐴)) |
| 8 | 7 | exlimdv 1933 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → 𝑛 ≼ 𝐴)) |
| 9 | 8 | ralimdv 3143 | . . 3 ⊢ (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ∀𝑛 ∈ ω 𝑛 ≼ 𝐴)) |
| 10 | domalom 37377 | . . 3 ⊢ (∀𝑛 ∈ ω 𝑛 ≼ 𝐴 → ¬ 𝐴 ∈ Fin) | |
| 11 | 9, 10 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin)) |
| 12 | prcnel 3464 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ Fin) | |
| 13 | 12 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin)) |
| 14 | 11, 13 | pm2.61i 182 | 1 ⊢ (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 ωcom 7806 ≈ cen 8876 ≼ cdom 8877 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 |
| This theorem is referenced by: ctbssinf 37379 |
| Copyright terms: Public domain | W3C validator |