Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinf2 Structured version   Visualization version   GIF version

Theorem isinf2 37373
Description: The converse of isinf 9325. Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
isinf2 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinf2
StepHypRef Expression
1 ssdomg 9062 . . . . . . . . 9 (𝐴 ∈ V → (𝑥𝐴𝑥𝐴))
21adantr 480 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑥𝐴))
3 domen1 9187 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝐴𝑛𝐴))
43adantl 481 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑛𝐴))
52, 4sylibd 239 . . . . . . 7 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑛𝐴))
65expimpd 453 . . . . . 6 (𝐴 ∈ V → ((𝑥𝑛𝑥𝐴) → 𝑛𝐴))
76ancomsd 465 . . . . 5 (𝐴 ∈ V → ((𝑥𝐴𝑥𝑛) → 𝑛𝐴))
87exlimdv 1932 . . . 4 (𝐴 ∈ V → (∃𝑥(𝑥𝐴𝑥𝑛) → 𝑛𝐴))
98ralimdv 3175 . . 3 (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ∀𝑛 ∈ ω 𝑛𝐴))
10 domalom 37372 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
119, 10syl6 35 . 2 (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin))
12 prcnel 3515 . . 3 𝐴 ∈ V → ¬ 𝐴 ∈ Fin)
1312a1d 25 . 2 𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin))
1411, 13pm2.61i 182 1 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1777  wcel 2108  wral 3067  Vcvv 3488  wss 3976   class class class wbr 5166  ωcom 7905  cen 9002  cdom 9003  Fincfn 9005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-om 7906  df-1o 8524  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009
This theorem is referenced by:  ctbssinf  37374
  Copyright terms: Public domain W3C validator