Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinf2 Structured version   Visualization version   GIF version

Theorem isinf2 37393
Description: The converse of isinf 9207. Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
isinf2 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinf2
StepHypRef Expression
1 ssdomg 8971 . . . . . . . . 9 (𝐴 ∈ V → (𝑥𝐴𝑥𝐴))
21adantr 480 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑥𝐴))
3 domen1 9083 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝐴𝑛𝐴))
43adantl 481 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑛𝐴))
52, 4sylibd 239 . . . . . . 7 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑛𝐴))
65expimpd 453 . . . . . 6 (𝐴 ∈ V → ((𝑥𝑛𝑥𝐴) → 𝑛𝐴))
76ancomsd 465 . . . . 5 (𝐴 ∈ V → ((𝑥𝐴𝑥𝑛) → 𝑛𝐴))
87exlimdv 1933 . . . 4 (𝐴 ∈ V → (∃𝑥(𝑥𝐴𝑥𝑛) → 𝑛𝐴))
98ralimdv 3147 . . 3 (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ∀𝑛 ∈ ω 𝑛𝐴))
10 domalom 37392 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
119, 10syl6 35 . 2 (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin))
12 prcnel 3473 . . 3 𝐴 ∈ V → ¬ 𝐴 ∈ Fin)
1312a1d 25 . 2 𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin))
1411, 13pm2.61i 182 1 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wral 3044  Vcvv 3447  wss 3914   class class class wbr 5107  ωcom 7842  cen 8915  cdom 8916  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922
This theorem is referenced by:  ctbssinf  37394
  Copyright terms: Public domain W3C validator