Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinf2 Structured version   Visualization version   GIF version

Theorem isinf2 37365
Description: The converse of isinf 9278. Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
isinf2 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin)
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinf2
StepHypRef Expression
1 ssdomg 9022 . . . . . . . . 9 (𝐴 ∈ V → (𝑥𝐴𝑥𝐴))
21adantr 480 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑥𝐴))
3 domen1 9141 . . . . . . . . 9 (𝑥𝑛 → (𝑥𝐴𝑛𝐴))
43adantl 481 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑛𝐴))
52, 4sylibd 239 . . . . . . 7 ((𝐴 ∈ V ∧ 𝑥𝑛) → (𝑥𝐴𝑛𝐴))
65expimpd 453 . . . . . 6 (𝐴 ∈ V → ((𝑥𝑛𝑥𝐴) → 𝑛𝐴))
76ancomsd 465 . . . . 5 (𝐴 ∈ V → ((𝑥𝐴𝑥𝑛) → 𝑛𝐴))
87exlimdv 1932 . . . 4 (𝐴 ∈ V → (∃𝑥(𝑥𝐴𝑥𝑛) → 𝑛𝐴))
98ralimdv 3156 . . 3 (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ∀𝑛 ∈ ω 𝑛𝐴))
10 domalom 37364 . . 3 (∀𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin)
119, 10syl6 35 . 2 (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin))
12 prcnel 3490 . . 3 𝐴 ∈ V → ¬ 𝐴 ∈ Fin)
1312a1d 25 . 2 𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin))
1411, 13pm2.61i 182 1 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1778  wcel 2107  wral 3050  Vcvv 3463  wss 3931   class class class wbr 5123  ωcom 7869  cen 8964  cdom 8965  Fincfn 8967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7870  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971
This theorem is referenced by:  ctbssinf  37366
  Copyright terms: Public domain W3C validator