| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinf2 | Structured version Visualization version GIF version | ||
| Description: The converse of isinf 9278. Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020.) |
| Ref | Expression |
|---|---|
| isinf2 | ⊢ (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg 9022 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
| 2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) |
| 3 | domen1 9141 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝑛 → (𝑥 ≼ 𝐴 ↔ 𝑛 ≼ 𝐴)) | |
| 4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ≼ 𝐴 ↔ 𝑛 ≼ 𝐴)) |
| 5 | 2, 4 | sylibd 239 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ⊆ 𝐴 → 𝑛 ≼ 𝐴)) |
| 6 | 5 | expimpd 453 | . . . . . 6 ⊢ (𝐴 ∈ V → ((𝑥 ≈ 𝑛 ∧ 𝑥 ⊆ 𝐴) → 𝑛 ≼ 𝐴)) |
| 7 | 6 | ancomsd 465 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → 𝑛 ≼ 𝐴)) |
| 8 | 7 | exlimdv 1932 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → 𝑛 ≼ 𝐴)) |
| 9 | 8 | ralimdv 3156 | . . 3 ⊢ (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ∀𝑛 ∈ ω 𝑛 ≼ 𝐴)) |
| 10 | domalom 37364 | . . 3 ⊢ (∀𝑛 ∈ ω 𝑛 ≼ 𝐴 → ¬ 𝐴 ∈ Fin) | |
| 11 | 9, 10 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin)) |
| 12 | prcnel 3490 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ Fin) | |
| 13 | 12 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin)) |
| 14 | 11, 13 | pm2.61i 182 | 1 ⊢ (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ⊆ wss 3931 class class class wbr 5123 ωcom 7869 ≈ cen 8964 ≼ cdom 8965 Fincfn 8967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 |
| This theorem is referenced by: ctbssinf 37366 |
| Copyright terms: Public domain | W3C validator |