![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isinf2 | Structured version Visualization version GIF version |
Description: The converse of isinf 9303. Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020.) |
Ref | Expression |
---|---|
isinf2 | ⊢ (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 9048 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) | |
2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) |
3 | domen1 9167 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝑛 → (𝑥 ≼ 𝐴 ↔ 𝑛 ≼ 𝐴)) | |
4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ≼ 𝐴 ↔ 𝑛 ≼ 𝐴)) |
5 | 2, 4 | sylibd 239 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝑥 ≈ 𝑛) → (𝑥 ⊆ 𝐴 → 𝑛 ≼ 𝐴)) |
6 | 5 | expimpd 453 | . . . . . 6 ⊢ (𝐴 ∈ V → ((𝑥 ≈ 𝑛 ∧ 𝑥 ⊆ 𝐴) → 𝑛 ≼ 𝐴)) |
7 | 6 | ancomsd 465 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → 𝑛 ≼ 𝐴)) |
8 | 7 | exlimdv 1933 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → 𝑛 ≼ 𝐴)) |
9 | 8 | ralimdv 3169 | . . 3 ⊢ (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ∀𝑛 ∈ ω 𝑛 ≼ 𝐴)) |
10 | domalom 37399 | . . 3 ⊢ (∀𝑛 ∈ ω 𝑛 ≼ 𝐴 → ¬ 𝐴 ∈ Fin) | |
11 | 9, 10 | syl6 35 | . 2 ⊢ (𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin)) |
12 | prcnel 3508 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ Fin) | |
13 | 12 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ V → (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin)) |
14 | 11, 13 | pm2.61i 182 | 1 ⊢ (∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ¬ 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2108 ∀wral 3061 Vcvv 3481 ⊆ wss 3966 class class class wbr 5151 ωcom 7894 ≈ cen 8990 ≼ cdom 8991 Fincfn 8993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-om 7895 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 |
This theorem is referenced by: ctbssinf 37401 |
Copyright terms: Public domain | W3C validator |