MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppco Structured version   Visualization version   GIF version

Theorem suppco 8247
Description: The support of the composition of two functions is the inverse image by the inner function of the support of the outer function. (Contributed by AV, 30-May-2019.) Extract this statement from the proof of supp0cosupp0 8249. (Revised by SN, 15-Sep-2023.)
Assertion
Ref Expression
suppco ((𝐹𝑉𝐺𝑊) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))

Proof of Theorem suppco
StepHypRef Expression
1 coexg 7969 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹𝐺) ∈ V)
2 simpl 482 . . . . 5 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → 𝑍 ∈ V)
3 suppimacnv 8215 . . . . 5 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
41, 2, 3syl2an2 685 . . . 4 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
5 cnvco 5910 . . . . . 6 (𝐹𝐺) = (𝐺𝐹)
65imaeq1i 6086 . . . . 5 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
76a1i 11 . . . 4 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍})))
8 imaco 6282 . . . . 5 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
9 simprl 770 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → 𝐹𝑉)
10 suppimacnv 8215 . . . . . . 7 ((𝐹𝑉𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
119, 2, 10syl2anc 583 . . . . . 6 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1211imaeq2d 6089 . . . . 5 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐺 “ (𝐹 supp 𝑍)) = (𝐺 “ (𝐹 “ (V ∖ {𝑍}))))
138, 12eqtr4id 2799 . . . 4 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 supp 𝑍)))
144, 7, 133eqtrd 2784 . . 3 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
1514ex 412 . 2 (𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍))))
16 prcnel 3515 . . . . . 6 𝑍 ∈ V → ¬ 𝑍 ∈ V)
1716intnand 488 . . . . 5 𝑍 ∈ V → ¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
18 supp0prc 8204 . . . . 5 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
1917, 18syl 17 . . . 4 𝑍 ∈ V → ((𝐹𝐺) supp 𝑍) = ∅)
2016intnand 488 . . . . . . 7 𝑍 ∈ V → ¬ (𝐹 ∈ V ∧ 𝑍 ∈ V))
21 supp0prc 8204 . . . . . . 7 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
2220, 21syl 17 . . . . . 6 𝑍 ∈ V → (𝐹 supp 𝑍) = ∅)
2322imaeq2d 6089 . . . . 5 𝑍 ∈ V → (𝐺 “ (𝐹 supp 𝑍)) = (𝐺 “ ∅))
24 ima0 6106 . . . . 5 (𝐺 “ ∅) = ∅
2523, 24eqtrdi 2796 . . . 4 𝑍 ∈ V → (𝐺 “ (𝐹 supp 𝑍)) = ∅)
2619, 25eqtr4d 2783 . . 3 𝑍 ∈ V → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
2726a1d 25 . 2 𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍))))
2815, 27pm2.61i 182 1 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  c0 4352  {csn 4648  ccnv 5699  cima 5703  ccom 5704  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  supp0cosupp0  8249  imacosupp  8250
  Copyright terms: Public domain W3C validator