Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafvel Structured version   Visualization version   GIF version

Theorem fmlafvel 32247
 Description: A class is a valid Godel formula of height 𝑁 iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
fmlafvel (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))

Proof of Theorem fmlafvel
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6543 . . . . . . 7 (𝑥 = ∅ → (Fmla‘𝑥) = (Fmla‘∅))
21eleq2d 2868 . . . . . 6 (𝑥 = ∅ → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘∅)))
3 fveq2 6543 . . . . . . 7 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
43eleq2d 2868 . . . . . 6 (𝑥 = ∅ → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
52, 4bibi12d 347 . . . . 5 (𝑥 = ∅ → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅))))
65imbi2d 342 . . . 4 (𝑥 = ∅ → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))))
7 fveq2 6543 . . . . . . 7 (𝑥 = 𝑦 → (Fmla‘𝑥) = (Fmla‘𝑦))
87eleq2d 2868 . . . . . 6 (𝑥 = 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑦)))
9 fveq2 6543 . . . . . . 7 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
109eleq2d 2868 . . . . . 6 (𝑥 = 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
118, 10bibi12d 347 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
1211imbi2d 342 . . . 4 (𝑥 = 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))))
13 fveq2 6543 . . . . . . 7 (𝑥 = suc 𝑦 → (Fmla‘𝑥) = (Fmla‘suc 𝑦))
1413eleq2d 2868 . . . . . 6 (𝑥 = suc 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘suc 𝑦)))
15 fveq2 6543 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
1615eleq2d 2868 . . . . . 6 (𝑥 = suc 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
1714, 16bibi12d 347 . . . . 5 (𝑥 = suc 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦))))
1817imbi2d 342 . . . 4 (𝑥 = suc 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
19 fveq2 6543 . . . . . . 7 (𝑥 = 𝑁 → (Fmla‘𝑥) = (Fmla‘𝑁))
2019eleq2d 2868 . . . . . 6 (𝑥 = 𝑁 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑁)))
21 fveq2 6543 . . . . . . 7 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
2221eleq2d 2868 . . . . . 6 (𝑥 = 𝑁 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
2320, 22bibi12d 347 . . . . 5 (𝑥 = 𝑁 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
2423imbi2d 342 . . . 4 (𝑥 = 𝑁 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))))
25 eqeq1 2799 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝐹 = (𝑖𝑔𝑗)))
26252rexbidv 3263 . . . . . . 7 (𝑥 = 𝐹 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
2726elrab 3619 . . . . . 6 (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
28 eqidd 2796 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∅ = ∅)
29 simpr 485 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3028, 29jca 512 . . . . . . 7 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
31 simpr 485 . . . . . . . . 9 ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3231anim2i 616 . . . . . . . 8 ((𝐹 ∈ V ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
3332ex 413 . . . . . . 7 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3430, 33impbid2 227 . . . . . 6 (𝐹 ∈ V → ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3527, 34syl5bb 284 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
36 fmla0 32244 . . . . . . 7 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3736eleq2i 2874 . . . . . 6 (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
3837a1i 11 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}))
39 satf00 32236 . . . . . . . 8 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
4039a1i 11 . . . . . . 7 (𝐹 ∈ V → ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
4140eleq2d 2868 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}))
42 0ex 5107 . . . . . . 7 ∅ ∈ V
43 eqeq1 2799 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
4443, 26bi2anan9r 636 . . . . . . . 8 ((𝑥 = 𝐹𝑦 = ∅) → ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4544opelopabga 5315 . . . . . . 7 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4642, 45mpan2 687 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4741, 46bitrd 280 . . . . 5 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4835, 38, 473bitr4d 312 . . . 4 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
49 eqid 2795 . . . . . . . . . . . 12 ∅ = ∅
5049biantrur 531 . . . . . . . . . . 11 (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5150bicomi 225 . . . . . . . . . 10 ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5251a1i 11 . . . . . . . . 9 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
53 eqeq1 2799 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑧 = ∅ ↔ ∅ = ∅))
54 eqeq1 2799 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
5554rexbidv 3260 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
56 eqeq1 2799 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝐹 = ∀𝑔𝑖(1st𝑢)))
5756rexbidv 3260 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5855, 57orbi12d 913 . . . . . . . . . . . . 13 (𝑥 = 𝐹 → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5958rexbidv 3260 . . . . . . . . . . . 12 (𝑥 = 𝐹 → (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6053, 59bi2anan9r 636 . . . . . . . . . . 11 ((𝑥 = 𝐹𝑧 = ∅) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6160opelopabga 5315 . . . . . . . . . 10 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6242, 61mpan2 687 . . . . . . . . 9 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6359elabg 3605 . . . . . . . . 9 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6452, 62, 633bitr4d 312 . . . . . . . 8 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6564adantl 482 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6665orbi2d 910 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
67 eqid 2795 . . . . . . . . . 10 (∅ Sat ∅) = (∅ Sat ∅)
6867satf0suc 32238 . . . . . . . . 9 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6968eleq2d 2868 . . . . . . . 8 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
70 elun 4050 . . . . . . . 8 (⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7169, 70syl6bb 288 . . . . . . 7 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
7271ad2antrr 722 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
73 fmlasuc0 32246 . . . . . . . . 9 (𝑦 ∈ ω → (Fmla‘suc 𝑦) = ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7473eleq2d 2868 . . . . . . . 8 (𝑦 ∈ ω → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
7574ad2antrr 722 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
76 elun 4050 . . . . . . . 8 (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7776a1i 11 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
78 simpr 485 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
7978imp 407 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
8079orbi1d 911 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8175, 77, 803bitrd 306 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8266, 72, 813bitr4rd 313 . . . . 5 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
8382exp31 420 . . . 4 (𝑦 ∈ ω → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
846, 12, 18, 24, 48, 83finds 7469 . . 3 (𝑁 ∈ ω → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
8584com12 32 . 2 (𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
86 prcnel 3461 . . . . 5 𝐹 ∈ V → ¬ 𝐹 ∈ (Fmla‘𝑁))
8786adantr 481 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ 𝐹 ∈ (Fmla‘𝑁))
88 opprc1 4738 . . . . . 6 𝐹 ∈ V → ⟨𝐹, ∅⟩ = ∅)
8988adantr 481 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ⟨𝐹, ∅⟩ = ∅)
90 satf0n0 32240 . . . . . . 7 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
91 df-nel 3091 . . . . . . 7 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9290, 91sylib 219 . . . . . 6 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9392adantl 482 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9489, 93eqneltrd 2902 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
9587, 942falsed 378 . . 3 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
9695ex 413 . 2 𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
9785, 96pm2.61i 183 1 (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 842   = wceq 1522   ∈ wcel 2081  {cab 2775   ∉ wnel 3090  ∃wrex 3106  {crab 3109  Vcvv 3437   ∪ cun 3861  ∅c0 4215  ⟨cop 4482  {copab 5028  suc csuc 6073  ‘cfv 6230  (class class class)co 7021  ωcom 7441  1st c1st 7548  ∈𝑔cgoe 32195  ⊼𝑔cgna 32196  ∀𝑔cgol 32197   Sat csat 32198  Fmlacfmla 32199 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-map 8263  df-goel 32202  df-sat 32205  df-fmla 32207 This theorem is referenced by:  fmlasuc  32248
 Copyright terms: Public domain W3C validator