Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafvel Structured version   Visualization version   GIF version

Theorem fmlafvel 35349
Description: A class is a valid Godel formula of height 𝑁 iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
fmlafvel (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))

Proof of Theorem fmlafvel
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6886 . . . . . . 7 (𝑥 = ∅ → (Fmla‘𝑥) = (Fmla‘∅))
21eleq2d 2819 . . . . . 6 (𝑥 = ∅ → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘∅)))
3 fveq2 6886 . . . . . . 7 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
43eleq2d 2819 . . . . . 6 (𝑥 = ∅ → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
52, 4bibi12d 345 . . . . 5 (𝑥 = ∅ → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅))))
65imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))))
7 fveq2 6886 . . . . . . 7 (𝑥 = 𝑦 → (Fmla‘𝑥) = (Fmla‘𝑦))
87eleq2d 2819 . . . . . 6 (𝑥 = 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑦)))
9 fveq2 6886 . . . . . . 7 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
109eleq2d 2819 . . . . . 6 (𝑥 = 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
118, 10bibi12d 345 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
1211imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))))
13 fveq2 6886 . . . . . . 7 (𝑥 = suc 𝑦 → (Fmla‘𝑥) = (Fmla‘suc 𝑦))
1413eleq2d 2819 . . . . . 6 (𝑥 = suc 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘suc 𝑦)))
15 fveq2 6886 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
1615eleq2d 2819 . . . . . 6 (𝑥 = suc 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
1714, 16bibi12d 345 . . . . 5 (𝑥 = suc 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦))))
1817imbi2d 340 . . . 4 (𝑥 = suc 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
19 fveq2 6886 . . . . . . 7 (𝑥 = 𝑁 → (Fmla‘𝑥) = (Fmla‘𝑁))
2019eleq2d 2819 . . . . . 6 (𝑥 = 𝑁 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑁)))
21 fveq2 6886 . . . . . . 7 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
2221eleq2d 2819 . . . . . 6 (𝑥 = 𝑁 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
2320, 22bibi12d 345 . . . . 5 (𝑥 = 𝑁 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
2423imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))))
25 eqeq1 2738 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝐹 = (𝑖𝑔𝑗)))
26252rexbidv 3209 . . . . . . 7 (𝑥 = 𝐹 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
2726elrab 3675 . . . . . 6 (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
28 eqidd 2735 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∅ = ∅)
29 simpr 484 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3028, 29jca 511 . . . . . . 7 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
31 simpr 484 . . . . . . . . 9 ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3231anim2i 617 . . . . . . . 8 ((𝐹 ∈ V ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
3332ex 412 . . . . . . 7 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3430, 33impbid2 226 . . . . . 6 (𝐹 ∈ V → ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3527, 34bitrid 283 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
36 fmla0 35346 . . . . . . 7 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3736eleq2i 2825 . . . . . 6 (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
3837a1i 11 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}))
39 satf00 35338 . . . . . . . 8 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
4039a1i 11 . . . . . . 7 (𝐹 ∈ V → ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
4140eleq2d 2819 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}))
42 0ex 5287 . . . . . . 7 ∅ ∈ V
43 eqeq1 2738 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
4443, 26bi2anan9r 639 . . . . . . . 8 ((𝑥 = 𝐹𝑦 = ∅) → ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4544opelopabga 5518 . . . . . . 7 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4642, 45mpan2 691 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4741, 46bitrd 279 . . . . 5 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4835, 38, 473bitr4d 311 . . . 4 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
49 eqid 2734 . . . . . . . . . . . 12 ∅ = ∅
5049biantrur 530 . . . . . . . . . . 11 (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5150bicomi 224 . . . . . . . . . 10 ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5251a1i 11 . . . . . . . . 9 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
53 eqeq1 2738 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑧 = ∅ ↔ ∅ = ∅))
54 eqeq1 2738 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
5554rexbidv 3166 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
56 eqeq1 2738 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝐹 = ∀𝑔𝑖(1st𝑢)))
5756rexbidv 3166 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5855, 57orbi12d 918 . . . . . . . . . . . . 13 (𝑥 = 𝐹 → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5958rexbidv 3166 . . . . . . . . . . . 12 (𝑥 = 𝐹 → (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6053, 59bi2anan9r 639 . . . . . . . . . . 11 ((𝑥 = 𝐹𝑧 = ∅) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6160opelopabga 5518 . . . . . . . . . 10 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6242, 61mpan2 691 . . . . . . . . 9 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6359elabg 3659 . . . . . . . . 9 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6452, 62, 633bitr4d 311 . . . . . . . 8 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6564adantl 481 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6665orbi2d 915 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
67 eqid 2734 . . . . . . . . . 10 (∅ Sat ∅) = (∅ Sat ∅)
6867satf0suc 35340 . . . . . . . . 9 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6968eleq2d 2819 . . . . . . . 8 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
70 elun 4133 . . . . . . . 8 (⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7169, 70bitrdi 287 . . . . . . 7 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
7271ad2antrr 726 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
73 fmlasuc0 35348 . . . . . . . . 9 (𝑦 ∈ ω → (Fmla‘suc 𝑦) = ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7473eleq2d 2819 . . . . . . . 8 (𝑦 ∈ ω → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
7574ad2antrr 726 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
76 elun 4133 . . . . . . . 8 (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7776a1i 11 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
78 simpr 484 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
7978imp 406 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
8079orbi1d 916 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8175, 77, 803bitrd 305 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8266, 72, 813bitr4rd 312 . . . . 5 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
8382exp31 419 . . . 4 (𝑦 ∈ ω → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
846, 12, 18, 24, 48, 83finds 7900 . . 3 (𝑁 ∈ ω → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
8584com12 32 . 2 (𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
86 prcnel 3490 . . . . 5 𝐹 ∈ V → ¬ 𝐹 ∈ (Fmla‘𝑁))
8786adantr 480 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ 𝐹 ∈ (Fmla‘𝑁))
88 opprc1 4877 . . . . . 6 𝐹 ∈ V → ⟨𝐹, ∅⟩ = ∅)
8988adantr 480 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ⟨𝐹, ∅⟩ = ∅)
90 satf0n0 35342 . . . . . . 7 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
91 df-nel 3036 . . . . . . 7 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9290, 91sylib 218 . . . . . 6 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9392adantl 481 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9489, 93eqneltrd 2853 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
9587, 942falsed 376 . . 3 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
9695ex 412 . 2 𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
9785, 96pm2.61i 182 1 (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  {cab 2712  wnel 3035  wrex 3059  {crab 3419  Vcvv 3463  cun 3929  c0 4313  cop 4612  {copab 5185  suc csuc 6365  cfv 6541  (class class class)co 7413  ωcom 7869  1st c1st 7994  𝑔cgoe 35297  𝑔cgna 35298  𝑔cgol 35299   Sat csat 35300  Fmlacfmla 35301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-map 8850  df-goel 35304  df-sat 35307  df-fmla 35309
This theorem is referenced by:  fmlasuc  35350
  Copyright terms: Public domain W3C validator