Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafvel Structured version   Visualization version   GIF version

Theorem fmlafvel 35357
Description: A class is a valid Godel formula of height 𝑁 iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
fmlafvel (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))

Proof of Theorem fmlafvel
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . . . 7 (𝑥 = ∅ → (Fmla‘𝑥) = (Fmla‘∅))
21eleq2d 2814 . . . . . 6 (𝑥 = ∅ → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘∅)))
3 fveq2 6826 . . . . . . 7 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
43eleq2d 2814 . . . . . 6 (𝑥 = ∅ → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
52, 4bibi12d 345 . . . . 5 (𝑥 = ∅ → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅))))
65imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))))
7 fveq2 6826 . . . . . . 7 (𝑥 = 𝑦 → (Fmla‘𝑥) = (Fmla‘𝑦))
87eleq2d 2814 . . . . . 6 (𝑥 = 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑦)))
9 fveq2 6826 . . . . . . 7 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
109eleq2d 2814 . . . . . 6 (𝑥 = 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
118, 10bibi12d 345 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
1211imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))))
13 fveq2 6826 . . . . . . 7 (𝑥 = suc 𝑦 → (Fmla‘𝑥) = (Fmla‘suc 𝑦))
1413eleq2d 2814 . . . . . 6 (𝑥 = suc 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘suc 𝑦)))
15 fveq2 6826 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
1615eleq2d 2814 . . . . . 6 (𝑥 = suc 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
1714, 16bibi12d 345 . . . . 5 (𝑥 = suc 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦))))
1817imbi2d 340 . . . 4 (𝑥 = suc 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
19 fveq2 6826 . . . . . . 7 (𝑥 = 𝑁 → (Fmla‘𝑥) = (Fmla‘𝑁))
2019eleq2d 2814 . . . . . 6 (𝑥 = 𝑁 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑁)))
21 fveq2 6826 . . . . . . 7 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
2221eleq2d 2814 . . . . . 6 (𝑥 = 𝑁 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
2320, 22bibi12d 345 . . . . 5 (𝑥 = 𝑁 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
2423imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))))
25 eqeq1 2733 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝐹 = (𝑖𝑔𝑗)))
26252rexbidv 3194 . . . . . . 7 (𝑥 = 𝐹 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
2726elrab 3650 . . . . . 6 (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
28 eqidd 2730 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∅ = ∅)
29 simpr 484 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3028, 29jca 511 . . . . . . 7 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
31 simpr 484 . . . . . . . . 9 ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3231anim2i 617 . . . . . . . 8 ((𝐹 ∈ V ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
3332ex 412 . . . . . . 7 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3430, 33impbid2 226 . . . . . 6 (𝐹 ∈ V → ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3527, 34bitrid 283 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
36 fmla0 35354 . . . . . . 7 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3736eleq2i 2820 . . . . . 6 (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
3837a1i 11 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}))
39 satf00 35346 . . . . . . . 8 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
4039a1i 11 . . . . . . 7 (𝐹 ∈ V → ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
4140eleq2d 2814 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}))
42 0ex 5249 . . . . . . 7 ∅ ∈ V
43 eqeq1 2733 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
4443, 26bi2anan9r 639 . . . . . . . 8 ((𝑥 = 𝐹𝑦 = ∅) → ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4544opelopabga 5480 . . . . . . 7 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4642, 45mpan2 691 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4741, 46bitrd 279 . . . . 5 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4835, 38, 473bitr4d 311 . . . 4 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
49 eqid 2729 . . . . . . . . . . . 12 ∅ = ∅
5049biantrur 530 . . . . . . . . . . 11 (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5150bicomi 224 . . . . . . . . . 10 ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5251a1i 11 . . . . . . . . 9 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
53 eqeq1 2733 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑧 = ∅ ↔ ∅ = ∅))
54 eqeq1 2733 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
5554rexbidv 3153 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
56 eqeq1 2733 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝐹 = ∀𝑔𝑖(1st𝑢)))
5756rexbidv 3153 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5855, 57orbi12d 918 . . . . . . . . . . . . 13 (𝑥 = 𝐹 → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5958rexbidv 3153 . . . . . . . . . . . 12 (𝑥 = 𝐹 → (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6053, 59bi2anan9r 639 . . . . . . . . . . 11 ((𝑥 = 𝐹𝑧 = ∅) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6160opelopabga 5480 . . . . . . . . . 10 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6242, 61mpan2 691 . . . . . . . . 9 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6359elabg 3634 . . . . . . . . 9 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6452, 62, 633bitr4d 311 . . . . . . . 8 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6564adantl 481 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6665orbi2d 915 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
67 eqid 2729 . . . . . . . . . 10 (∅ Sat ∅) = (∅ Sat ∅)
6867satf0suc 35348 . . . . . . . . 9 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6968eleq2d 2814 . . . . . . . 8 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
70 elun 4106 . . . . . . . 8 (⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7169, 70bitrdi 287 . . . . . . 7 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
7271ad2antrr 726 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
73 fmlasuc0 35356 . . . . . . . . 9 (𝑦 ∈ ω → (Fmla‘suc 𝑦) = ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7473eleq2d 2814 . . . . . . . 8 (𝑦 ∈ ω → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
7574ad2antrr 726 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
76 elun 4106 . . . . . . . 8 (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7776a1i 11 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
78 simpr 484 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
7978imp 406 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
8079orbi1d 916 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8175, 77, 803bitrd 305 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8266, 72, 813bitr4rd 312 . . . . 5 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
8382exp31 419 . . . 4 (𝑦 ∈ ω → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
846, 12, 18, 24, 48, 83finds 7836 . . 3 (𝑁 ∈ ω → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
8584com12 32 . 2 (𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
86 prcnel 3464 . . . . 5 𝐹 ∈ V → ¬ 𝐹 ∈ (Fmla‘𝑁))
8786adantr 480 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ 𝐹 ∈ (Fmla‘𝑁))
88 opprc1 4851 . . . . . 6 𝐹 ∈ V → ⟨𝐹, ∅⟩ = ∅)
8988adantr 480 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ⟨𝐹, ∅⟩ = ∅)
90 satf0n0 35350 . . . . . . 7 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
91 df-nel 3030 . . . . . . 7 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9290, 91sylib 218 . . . . . 6 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9392adantl 481 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9489, 93eqneltrd 2848 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
9587, 942falsed 376 . . 3 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
9695ex 412 . 2 𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
9785, 96pm2.61i 182 1 (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wnel 3029  wrex 3053  {crab 3396  Vcvv 3438  cun 3903  c0 4286  cop 4585  {copab 5157  suc csuc 6313  cfv 6486  (class class class)co 7353  ωcom 7806  1st c1st 7929  𝑔cgoe 35305  𝑔cgna 35306  𝑔cgol 35307   Sat csat 35308  Fmlacfmla 35309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-map 8762  df-goel 35312  df-sat 35315  df-fmla 35317
This theorem is referenced by:  fmlasuc  35358
  Copyright terms: Public domain W3C validator