Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafvel Structured version   Visualization version   GIF version

Theorem fmlafvel 34995
Description: A class is a valid Godel formula of height 𝑁 iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
fmlafvel (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))

Proof of Theorem fmlafvel
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6897 . . . . . . 7 (𝑥 = ∅ → (Fmla‘𝑥) = (Fmla‘∅))
21eleq2d 2815 . . . . . 6 (𝑥 = ∅ → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘∅)))
3 fveq2 6897 . . . . . . 7 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
43eleq2d 2815 . . . . . 6 (𝑥 = ∅ → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
52, 4bibi12d 345 . . . . 5 (𝑥 = ∅ → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅))))
65imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))))
7 fveq2 6897 . . . . . . 7 (𝑥 = 𝑦 → (Fmla‘𝑥) = (Fmla‘𝑦))
87eleq2d 2815 . . . . . 6 (𝑥 = 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑦)))
9 fveq2 6897 . . . . . . 7 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
109eleq2d 2815 . . . . . 6 (𝑥 = 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
118, 10bibi12d 345 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
1211imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))))
13 fveq2 6897 . . . . . . 7 (𝑥 = suc 𝑦 → (Fmla‘𝑥) = (Fmla‘suc 𝑦))
1413eleq2d 2815 . . . . . 6 (𝑥 = suc 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘suc 𝑦)))
15 fveq2 6897 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
1615eleq2d 2815 . . . . . 6 (𝑥 = suc 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
1714, 16bibi12d 345 . . . . 5 (𝑥 = suc 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦))))
1817imbi2d 340 . . . 4 (𝑥 = suc 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
19 fveq2 6897 . . . . . . 7 (𝑥 = 𝑁 → (Fmla‘𝑥) = (Fmla‘𝑁))
2019eleq2d 2815 . . . . . 6 (𝑥 = 𝑁 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑁)))
21 fveq2 6897 . . . . . . 7 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
2221eleq2d 2815 . . . . . 6 (𝑥 = 𝑁 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
2320, 22bibi12d 345 . . . . 5 (𝑥 = 𝑁 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
2423imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))))
25 eqeq1 2732 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝐹 = (𝑖𝑔𝑗)))
26252rexbidv 3216 . . . . . . 7 (𝑥 = 𝐹 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
2726elrab 3682 . . . . . 6 (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
28 eqidd 2729 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∅ = ∅)
29 simpr 484 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3028, 29jca 511 . . . . . . 7 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
31 simpr 484 . . . . . . . . 9 ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3231anim2i 616 . . . . . . . 8 ((𝐹 ∈ V ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
3332ex 412 . . . . . . 7 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3430, 33impbid2 225 . . . . . 6 (𝐹 ∈ V → ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3527, 34bitrid 283 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
36 fmla0 34992 . . . . . . 7 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3736eleq2i 2821 . . . . . 6 (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
3837a1i 11 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}))
39 satf00 34984 . . . . . . . 8 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
4039a1i 11 . . . . . . 7 (𝐹 ∈ V → ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
4140eleq2d 2815 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}))
42 0ex 5307 . . . . . . 7 ∅ ∈ V
43 eqeq1 2732 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
4443, 26bi2anan9r 638 . . . . . . . 8 ((𝑥 = 𝐹𝑦 = ∅) → ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4544opelopabga 5535 . . . . . . 7 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4642, 45mpan2 690 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4741, 46bitrd 279 . . . . 5 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4835, 38, 473bitr4d 311 . . . 4 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
49 eqid 2728 . . . . . . . . . . . 12 ∅ = ∅
5049biantrur 530 . . . . . . . . . . 11 (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5150bicomi 223 . . . . . . . . . 10 ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5251a1i 11 . . . . . . . . 9 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
53 eqeq1 2732 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑧 = ∅ ↔ ∅ = ∅))
54 eqeq1 2732 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
5554rexbidv 3175 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
56 eqeq1 2732 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝐹 = ∀𝑔𝑖(1st𝑢)))
5756rexbidv 3175 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5855, 57orbi12d 917 . . . . . . . . . . . . 13 (𝑥 = 𝐹 → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5958rexbidv 3175 . . . . . . . . . . . 12 (𝑥 = 𝐹 → (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6053, 59bi2anan9r 638 . . . . . . . . . . 11 ((𝑥 = 𝐹𝑧 = ∅) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6160opelopabga 5535 . . . . . . . . . 10 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6242, 61mpan2 690 . . . . . . . . 9 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6359elabg 3665 . . . . . . . . 9 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6452, 62, 633bitr4d 311 . . . . . . . 8 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6564adantl 481 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6665orbi2d 914 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
67 eqid 2728 . . . . . . . . . 10 (∅ Sat ∅) = (∅ Sat ∅)
6867satf0suc 34986 . . . . . . . . 9 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6968eleq2d 2815 . . . . . . . 8 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
70 elun 4147 . . . . . . . 8 (⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7169, 70bitrdi 287 . . . . . . 7 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
7271ad2antrr 725 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
73 fmlasuc0 34994 . . . . . . . . 9 (𝑦 ∈ ω → (Fmla‘suc 𝑦) = ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7473eleq2d 2815 . . . . . . . 8 (𝑦 ∈ ω → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
7574ad2antrr 725 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
76 elun 4147 . . . . . . . 8 (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7776a1i 11 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
78 simpr 484 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
7978imp 406 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
8079orbi1d 915 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8175, 77, 803bitrd 305 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8266, 72, 813bitr4rd 312 . . . . 5 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
8382exp31 419 . . . 4 (𝑦 ∈ ω → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
846, 12, 18, 24, 48, 83finds 7904 . . 3 (𝑁 ∈ ω → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
8584com12 32 . 2 (𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
86 prcnel 3495 . . . . 5 𝐹 ∈ V → ¬ 𝐹 ∈ (Fmla‘𝑁))
8786adantr 480 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ 𝐹 ∈ (Fmla‘𝑁))
88 opprc1 4898 . . . . . 6 𝐹 ∈ V → ⟨𝐹, ∅⟩ = ∅)
8988adantr 480 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ⟨𝐹, ∅⟩ = ∅)
90 satf0n0 34988 . . . . . . 7 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
91 df-nel 3044 . . . . . . 7 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9290, 91sylib 217 . . . . . 6 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9392adantl 481 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9489, 93eqneltrd 2849 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
9587, 942falsed 376 . . 3 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
9695ex 412 . 2 𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
9785, 96pm2.61i 182 1 (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  {cab 2705  wnel 3043  wrex 3067  {crab 3429  Vcvv 3471  cun 3945  c0 4323  cop 4635  {copab 5210  suc csuc 6371  cfv 6548  (class class class)co 7420  ωcom 7870  1st c1st 7991  𝑔cgoe 34943  𝑔cgna 34944  𝑔cgol 34945   Sat csat 34946  Fmlacfmla 34947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-map 8847  df-goel 34950  df-sat 34953  df-fmla 34955
This theorem is referenced by:  fmlasuc  34996
  Copyright terms: Public domain W3C validator