Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlafvel Structured version   Visualization version   GIF version

Theorem fmlafvel 35391
Description: A class is a valid Godel formula of height 𝑁 iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
fmlafvel (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))

Proof of Theorem fmlafvel
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . . . . . 7 (𝑥 = ∅ → (Fmla‘𝑥) = (Fmla‘∅))
21eleq2d 2826 . . . . . 6 (𝑥 = ∅ → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘∅)))
3 fveq2 6905 . . . . . . 7 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
43eleq2d 2826 . . . . . 6 (𝑥 = ∅ → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
52, 4bibi12d 345 . . . . 5 (𝑥 = ∅ → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅))))
65imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))))
7 fveq2 6905 . . . . . . 7 (𝑥 = 𝑦 → (Fmla‘𝑥) = (Fmla‘𝑦))
87eleq2d 2826 . . . . . 6 (𝑥 = 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑦)))
9 fveq2 6905 . . . . . . 7 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
109eleq2d 2826 . . . . . 6 (𝑥 = 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
118, 10bibi12d 345 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
1211imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))))
13 fveq2 6905 . . . . . . 7 (𝑥 = suc 𝑦 → (Fmla‘𝑥) = (Fmla‘suc 𝑦))
1413eleq2d 2826 . . . . . 6 (𝑥 = suc 𝑦 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘suc 𝑦)))
15 fveq2 6905 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
1615eleq2d 2826 . . . . . 6 (𝑥 = suc 𝑦 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
1714, 16bibi12d 345 . . . . 5 (𝑥 = suc 𝑦 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦))))
1817imbi2d 340 . . . 4 (𝑥 = suc 𝑦 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
19 fveq2 6905 . . . . . . 7 (𝑥 = 𝑁 → (Fmla‘𝑥) = (Fmla‘𝑁))
2019eleq2d 2826 . . . . . 6 (𝑥 = 𝑁 → (𝐹 ∈ (Fmla‘𝑥) ↔ 𝐹 ∈ (Fmla‘𝑁)))
21 fveq2 6905 . . . . . . 7 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
2221eleq2d 2826 . . . . . 6 (𝑥 = 𝑁 → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
2320, 22bibi12d 345 . . . . 5 (𝑥 = 𝑁 → ((𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥)) ↔ (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
2423imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑥) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑥))) ↔ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))))
25 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝐹 = (𝑖𝑔𝑗)))
26252rexbidv 3221 . . . . . . 7 (𝑥 = 𝐹 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
2726elrab 3691 . . . . . 6 (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
28 eqidd 2737 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∅ = ∅)
29 simpr 484 . . . . . . . 8 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3028, 29jca 511 . . . . . . 7 ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
31 simpr 484 . . . . . . . . 9 ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))
3231anim2i 617 . . . . . . . 8 ((𝐹 ∈ V ∧ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)))
3332ex 412 . . . . . . 7 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) → (𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3430, 33impbid2 226 . . . . . 6 (𝐹 ∈ V → ((𝐹 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
3527, 34bitrid 283 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
36 fmla0 35388 . . . . . . 7 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3736eleq2i 2832 . . . . . 6 (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
3837a1i 11 . . . . 5 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ 𝐹 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}))
39 satf00 35380 . . . . . . . 8 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
4039a1i 11 . . . . . . 7 (𝐹 ∈ V → ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
4140eleq2d 2826 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}))
42 0ex 5306 . . . . . . 7 ∅ ∈ V
43 eqeq1 2740 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
4443, 26bi2anan9r 639 . . . . . . . 8 ((𝑥 = 𝐹𝑦 = ∅) → ((𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4544opelopabga 5537 . . . . . . 7 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4642, 45mpan2 691 . . . . . 6 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4741, 46bitrd 279 . . . . 5 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅) ↔ (∅ = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝐹 = (𝑖𝑔𝑗))))
4835, 38, 473bitr4d 311 . . . 4 (𝐹 ∈ V → (𝐹 ∈ (Fmla‘∅) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘∅)))
49 eqid 2736 . . . . . . . . . . . 12 ∅ = ∅
5049biantrur 530 . . . . . . . . . . 11 (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5150bicomi 224 . . . . . . . . . 10 ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5251a1i 11 . . . . . . . . 9 (𝐹 ∈ V → ((∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
53 eqeq1 2740 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝑧 = ∅ ↔ ∅ = ∅))
54 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
5554rexbidv 3178 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣))))
56 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑥 = 𝐹 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝐹 = ∀𝑔𝑖(1st𝑢)))
5756rexbidv 3178 . . . . . . . . . . . . . 14 (𝑥 = 𝐹 → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))
5855, 57orbi12d 918 . . . . . . . . . . . . 13 (𝑥 = 𝐹 → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
5958rexbidv 3178 . . . . . . . . . . . 12 (𝑥 = 𝐹 → (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6053, 59bi2anan9r 639 . . . . . . . . . . 11 ((𝑥 = 𝐹𝑧 = ∅) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6160opelopabga 5537 . . . . . . . . . 10 ((𝐹 ∈ V ∧ ∅ ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6242, 61mpan2 691 . . . . . . . . 9 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ (∅ = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢)))))
6359elabg 3675 . . . . . . . . 9 (𝐹 ∈ V → (𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))} ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝐹 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖(1st𝑢))))
6452, 62, 633bitr4d 311 . . . . . . . 8 (𝐹 ∈ V → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6564adantl 481 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ↔ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
6665orbi2d 915 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
67 eqid 2736 . . . . . . . . . 10 (∅ Sat ∅) = (∅ Sat ∅)
6867satf0suc 35382 . . . . . . . . 9 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6968eleq2d 2826 . . . . . . . 8 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
70 elun 4152 . . . . . . . 8 (⟨𝐹, ∅⟩ ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7169, 70bitrdi 287 . . . . . . 7 (𝑦 ∈ ω → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
7271ad2antrr 726 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ ⟨𝐹, ∅⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
73 fmlasuc0 35390 . . . . . . . . 9 (𝑦 ∈ ω → (Fmla‘suc 𝑦) = ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7473eleq2d 2826 . . . . . . . 8 (𝑦 ∈ ω → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
7574ad2antrr 726 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ 𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
76 elun 4152 . . . . . . . 8 (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}))
7776a1i 11 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
78 simpr 484 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))))
7978imp 406 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))
8079orbi1d 916 . . . . . . 7 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → ((𝐹 ∈ (Fmla‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))}) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8175, 77, 803bitrd 305 . . . . . 6 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ (⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝐹 ∈ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))})))
8266, 72, 813bitr4rd 312 . . . . 5 (((𝑦 ∈ ω ∧ (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦)))) ∧ 𝐹 ∈ V) → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))
8382exp31 419 . . . 4 (𝑦 ∈ ω → ((𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑦))) → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘suc 𝑦) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘suc 𝑦)))))
846, 12, 18, 24, 48, 83finds 7919 . . 3 (𝑁 ∈ ω → (𝐹 ∈ V → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
8584com12 32 . 2 (𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
86 prcnel 3506 . . . . 5 𝐹 ∈ V → ¬ 𝐹 ∈ (Fmla‘𝑁))
8786adantr 480 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ 𝐹 ∈ (Fmla‘𝑁))
88 opprc1 4896 . . . . . 6 𝐹 ∈ V → ⟨𝐹, ∅⟩ = ∅)
8988adantr 480 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ⟨𝐹, ∅⟩ = ∅)
90 satf0n0 35384 . . . . . . 7 (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁))
91 df-nel 3046 . . . . . . 7 (∅ ∉ ((∅ Sat ∅)‘𝑁) ↔ ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9290, 91sylib 218 . . . . . 6 (𝑁 ∈ ω → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9392adantl 481 . . . . 5 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ∅ ∈ ((∅ Sat ∅)‘𝑁))
9489, 93eqneltrd 2860 . . . 4 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → ¬ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
9587, 942falsed 376 . . 3 ((¬ 𝐹 ∈ V ∧ 𝑁 ∈ ω) → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
9695ex 412 . 2 𝐹 ∈ V → (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
9785, 96pm2.61i 182 1 (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ ⟨𝐹, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  {cab 2713  wnel 3045  wrex 3069  {crab 3435  Vcvv 3479  cun 3948  c0 4332  cop 4631  {copab 5204  suc csuc 6385  cfv 6560  (class class class)co 7432  ωcom 7888  1st c1st 8013  𝑔cgoe 35339  𝑔cgna 35340  𝑔cgol 35341   Sat csat 35342  Fmlacfmla 35343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-map 8869  df-goel 35346  df-sat 35349  df-fmla 35351
This theorem is referenced by:  fmlasuc  35392
  Copyright terms: Public domain W3C validator