MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2dmnop0 Structured version   Visualization version   GIF version

Theorem fun2dmnop0 13846
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 13847 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 16489. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.)
Hypotheses
Ref Expression
fun2dmnop.a 𝐴 ∈ V
fun2dmnop.b 𝐵 ∈ V
Assertion
Ref Expression
fun2dmnop0 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fun2dmnop0
StepHypRef Expression
1 simpl1 1187 . . . 4 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → Fun (𝐺 ∖ {∅}))
2 dmexg 7607 . . . . . 6 (𝐺 ∈ V → dom 𝐺 ∈ V)
32adantl 484 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → dom 𝐺 ∈ V)
4 fun2dmnop.a . . . . . . . . 9 𝐴 ∈ V
5 fun2dmnop.b . . . . . . . . 9 𝐵 ∈ V
64, 5prss 4746 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) ↔ {𝐴, 𝐵} ⊆ dom 𝐺)
7 simpl 485 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 ∈ dom 𝐺)
86, 7sylbir 237 . . . . . . 7 ({𝐴, 𝐵} ⊆ dom 𝐺𝐴 ∈ dom 𝐺)
983ad2ant3 1131 . . . . . 6 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐴 ∈ dom 𝐺)
109adantr 483 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ∈ dom 𝐺)
11 simpr 487 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐵 ∈ dom 𝐺)
126, 11sylbir 237 . . . . . . 7 ({𝐴, 𝐵} ⊆ dom 𝐺𝐵 ∈ dom 𝐺)
13123ad2ant3 1131 . . . . . 6 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐵 ∈ dom 𝐺)
1413adantr 483 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐵 ∈ dom 𝐺)
15 simpl2 1188 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴𝐵)
163, 10, 14, 15nehash2 13826 . . . 4 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 2 ≤ (♯‘dom 𝐺))
17 fundmge2nop0 13844 . . . 4 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))
181, 16, 17syl2anc 586 . . 3 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → ¬ 𝐺 ∈ (V × V))
1918ex 415 . 2 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))
20 prcnel 3518 . 2 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
2119, 20pm2.61d1 182 1 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  wss 3935  c0 4290  {csn 4560  {cpr 4562   class class class wbr 5058   × cxp 5547  dom cdm 5549  Fun wfun 6343  cfv 6349  cle 10670  2c2 11686  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685
This theorem is referenced by:  fun2dmnop  13847  funvtxdm2val  26792  funiedgdm2val  26793
  Copyright terms: Public domain W3C validator