![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2dmnop0 | Structured version Visualization version GIF version |
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 13597 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 16278. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
fun2dmnop.a | ⊢ 𝐴 ∈ V |
fun2dmnop.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fun2dmnop0 | ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1199 | . . . 4 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → Fun (𝐺 ∖ {∅})) | |
2 | dmexg 7377 | . . . . . 6 ⊢ (𝐺 ∈ V → dom 𝐺 ∈ V) | |
3 | 2 | adantl 475 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → dom 𝐺 ∈ V) |
4 | fun2dmnop.a | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
5 | fun2dmnop.b | . . . . . . . . 9 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | prss 4584 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) ↔ {𝐴, 𝐵} ⊆ dom 𝐺) |
7 | simpl 476 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 ∈ dom 𝐺) | |
8 | 6, 7 | sylbir 227 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ⊆ dom 𝐺 → 𝐴 ∈ dom 𝐺) |
9 | 8 | 3ad2ant3 1126 | . . . . . 6 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐴 ∈ dom 𝐺) |
10 | 9 | adantr 474 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ∈ dom 𝐺) |
11 | simpr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐵 ∈ dom 𝐺) | |
12 | 6, 11 | sylbir 227 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ⊆ dom 𝐺 → 𝐵 ∈ dom 𝐺) |
13 | 12 | 3ad2ant3 1126 | . . . . . 6 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐵 ∈ dom 𝐺) |
14 | 13 | adantr 474 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐵 ∈ dom 𝐺) |
15 | simpl2 1201 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ≠ 𝐵) | |
16 | 3, 10, 14, 15 | nehash2 13576 | . . . 4 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 2 ≤ (♯‘dom 𝐺)) |
17 | fundmge2nop0 13594 | . . . 4 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V)) | |
18 | 1, 16, 17 | syl2anc 579 | . . 3 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → ¬ 𝐺 ∈ (V × V)) |
19 | 18 | ex 403 | . 2 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))) |
20 | prcnel 3420 | . 2 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
21 | 19, 20 | pm2.61d1 173 | 1 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ∖ cdif 3789 ⊆ wss 3792 ∅c0 4141 {csn 4398 {cpr 4400 class class class wbr 4888 × cxp 5355 dom cdm 5357 Fun wfun 6131 ‘cfv 6137 ≤ cle 10414 2c2 11435 ♯chash 13441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-n0 11648 df-xnn0 11720 df-z 11734 df-uz 11998 df-fz 12649 df-hash 13442 |
This theorem is referenced by: fun2dmnop 13597 funvtxdm2val 26378 funiedgdm2val 26379 |
Copyright terms: Public domain | W3C validator |