MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2dmnop0 Structured version   Visualization version   GIF version

Theorem fun2dmnop0 13596
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 13597 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 16278. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.)
Hypotheses
Ref Expression
fun2dmnop.a 𝐴 ∈ V
fun2dmnop.b 𝐵 ∈ V
Assertion
Ref Expression
fun2dmnop0 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fun2dmnop0
StepHypRef Expression
1 simpl1 1199 . . . 4 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → Fun (𝐺 ∖ {∅}))
2 dmexg 7377 . . . . . 6 (𝐺 ∈ V → dom 𝐺 ∈ V)
32adantl 475 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → dom 𝐺 ∈ V)
4 fun2dmnop.a . . . . . . . . 9 𝐴 ∈ V
5 fun2dmnop.b . . . . . . . . 9 𝐵 ∈ V
64, 5prss 4584 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) ↔ {𝐴, 𝐵} ⊆ dom 𝐺)
7 simpl 476 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 ∈ dom 𝐺)
86, 7sylbir 227 . . . . . . 7 ({𝐴, 𝐵} ⊆ dom 𝐺𝐴 ∈ dom 𝐺)
983ad2ant3 1126 . . . . . 6 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐴 ∈ dom 𝐺)
109adantr 474 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ∈ dom 𝐺)
11 simpr 479 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐵 ∈ dom 𝐺)
126, 11sylbir 227 . . . . . . 7 ({𝐴, 𝐵} ⊆ dom 𝐺𝐵 ∈ dom 𝐺)
13123ad2ant3 1126 . . . . . 6 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐵 ∈ dom 𝐺)
1413adantr 474 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐵 ∈ dom 𝐺)
15 simpl2 1201 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴𝐵)
163, 10, 14, 15nehash2 13576 . . . 4 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 2 ≤ (♯‘dom 𝐺))
17 fundmge2nop0 13594 . . . 4 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))
181, 16, 17syl2anc 579 . . 3 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → ¬ 𝐺 ∈ (V × V))
1918ex 403 . 2 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))
20 prcnel 3420 . 2 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
2119, 20pm2.61d1 173 1 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1071  wcel 2107  wne 2969  Vcvv 3398  cdif 3789  wss 3792  c0 4141  {csn 4398  {cpr 4400   class class class wbr 4888   × cxp 5355  dom cdm 5357  Fun wfun 6131  cfv 6137  cle 10414  2c2 11435  chash 13441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-n0 11648  df-xnn0 11720  df-z 11734  df-uz 11998  df-fz 12649  df-hash 13442
This theorem is referenced by:  fun2dmnop  13597  funvtxdm2val  26378  funiedgdm2val  26379
  Copyright terms: Public domain W3C validator