![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2dmnop0 | Structured version Visualization version GIF version |
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 14462 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 17093. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
fun2dmnop.a | ⊢ 𝐴 ∈ V |
fun2dmnop.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fun2dmnop0 | ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1188 | . . . 4 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → Fun (𝐺 ∖ {∅})) | |
2 | dmexg 7891 | . . . . . 6 ⊢ (𝐺 ∈ V → dom 𝐺 ∈ V) | |
3 | 2 | adantl 481 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → dom 𝐺 ∈ V) |
4 | fun2dmnop.a | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
5 | fun2dmnop.b | . . . . . . . . 9 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | prss 4818 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) ↔ {𝐴, 𝐵} ⊆ dom 𝐺) |
7 | simpl 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐴 ∈ dom 𝐺) | |
8 | 6, 7 | sylbir 234 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ⊆ dom 𝐺 → 𝐴 ∈ dom 𝐺) |
9 | 8 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐴 ∈ dom 𝐺) |
10 | 9 | adantr 480 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ∈ dom 𝐺) |
11 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺) → 𝐵 ∈ dom 𝐺) | |
12 | 6, 11 | sylbir 234 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ⊆ dom 𝐺 → 𝐵 ∈ dom 𝐺) |
13 | 12 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐵 ∈ dom 𝐺) |
14 | 13 | adantr 480 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐵 ∈ dom 𝐺) |
15 | simpl2 1189 | . . . . 5 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ≠ 𝐵) | |
16 | 3, 10, 14, 15 | nehash2 14441 | . . . 4 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 2 ≤ (♯‘dom 𝐺)) |
17 | fundmge2nop0 14459 | . . . 4 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V)) | |
18 | 1, 16, 17 | syl2anc 583 | . . 3 ⊢ (((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → ¬ 𝐺 ∈ (V × V)) |
19 | 18 | ex 412 | . 2 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))) |
20 | prcnel 3492 | . 2 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
21 | 19, 20 | pm2.61d1 180 | 1 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ∖ cdif 3940 ⊆ wss 3943 ∅c0 4317 {csn 4623 {cpr 4625 class class class wbr 5141 × cxp 5667 dom cdm 5669 Fun wfun 6531 ‘cfv 6537 ≤ cle 11253 2c2 12271 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-oadd 8471 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 |
This theorem is referenced by: fun2dmnop 14462 funvtxdm2val 28781 funiedgdm2val 28782 |
Copyright terms: Public domain | W3C validator |