![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2prc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is not defined, compare with fvprc 6912. (Contributed by AV, 5-Sep-2022.) |
Ref | Expression |
---|---|
afv2prc | ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcnel 3515 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹) | |
2 | ndmafv2nrn 47137 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∉ wnel 3052 Vcvv 3488 dom cdm 5700 ran crn 5701 ''''cafv2 47123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nel 3053 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-dfat 47034 df-afv2 47124 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |