| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2prc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is not defined, compare with fvprc 6898. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2prc | ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcnel 3507 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹) | |
| 2 | ndmafv2nrn 47234 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∉ wnel 3046 Vcvv 3480 dom cdm 5685 ran crn 5686 ''''cafv2 47220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nel 3047 df-rab 3437 df-v 3482 df-un 3956 df-in 3958 df-ss 3968 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-uni 4908 df-dfat 47131 df-afv2 47221 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |