![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2prc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is not defined, compare with fvprc 6427. (Contributed by AV, 5-Sep-2022.) |
Ref | Expression |
---|---|
afv2prc | ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcnel 3436 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹) | |
2 | ndmafv2nrn 42125 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2166 ∉ wnel 3103 Vcvv 3415 dom cdm 5343 ran crn 5344 ''''cafv2 42111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-nel 3104 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-uni 4660 df-dfat 42022 df-afv2 42112 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |