| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2prc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is not defined, compare with fvprc 6814. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2prc | ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcnel 3462 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹) | |
| 2 | ndmafv2nrn 47252 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∉ wnel 3032 Vcvv 3436 dom cdm 5616 ran crn 5617 ''''cafv2 47238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nel 3033 df-rab 3396 df-v 3438 df-un 3907 df-in 3909 df-ss 3919 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-uni 4860 df-dfat 47149 df-afv2 47239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |