MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr3cyclexlem Structured version   Visualization version   GIF version

Theorem uhgr3cyclexlem 27952
Description: Lemma for uhgr3cyclex 27953. (Contributed by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
uhgr3cyclex.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgr3cyclexlem ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → 𝐽𝐾)

Proof of Theorem uhgr3cyclexlem
StepHypRef Expression
1 fveq2 6663 . . . . . . . . 9 (𝐽 = 𝐾 → (𝐼𝐽) = (𝐼𝐾))
21eqeq2d 2830 . . . . . . . 8 (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼𝐽) ↔ {𝐵, 𝐶} = (𝐼𝐾)))
3 eqeq2 2831 . . . . . . . . . . . 12 ((𝐼𝐾) = {𝐶, 𝐴} → ({𝐵, 𝐶} = (𝐼𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴}))
43eqcoms 2827 . . . . . . . . . . 11 ({𝐶, 𝐴} = (𝐼𝐾) → ({𝐵, 𝐶} = (𝐼𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴}))
5 prcom 4660 . . . . . . . . . . . . . 14 {𝐶, 𝐴} = {𝐴, 𝐶}
65eqeq1i 2824 . . . . . . . . . . . . 13 ({𝐶, 𝐴} = {𝐵, 𝐶} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
7 simpl 485 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
8 simpr 487 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
97, 8preq1b 4769 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵𝑉) → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵))
109biimpcd 251 . . . . . . . . . . . . 13 ({𝐴, 𝐶} = {𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
116, 10sylbi 219 . . . . . . . . . . . 12 ({𝐶, 𝐴} = {𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
1211eqcoms 2827 . . . . . . . . . . 11 ({𝐵, 𝐶} = {𝐶, 𝐴} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
134, 12syl6bi 255 . . . . . . . . . 10 ({𝐶, 𝐴} = (𝐼𝐾) → ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
1413adantl 484 . . . . . . . . 9 ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
1514com12 32 . . . . . . . 8 ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
162, 15syl6bi 255 . . . . . . 7 (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼𝐽) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))))
1716adantld 493 . . . . . 6 (𝐽 = 𝐾 → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))))
1817com14 96 . . . . 5 ((𝐴𝑉𝐵𝑉) → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → (𝐽 = 𝐾𝐴 = 𝐵))))
1918imp32 421 . . . 4 (((𝐴𝑉𝐵𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → (𝐽 = 𝐾𝐴 = 𝐵))
2019necon3d 3035 . . 3 (((𝐴𝑉𝐵𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → (𝐴𝐵𝐽𝐾))
2120impancom 454 . 2 (((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾))) → 𝐽𝐾))
2221imp 409 1 ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → 𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wne 3014  {cpr 4561  dom cdm 5548  cfv 6348  Vtxcvtx 26773  iEdgciedg 26774  Edgcedg 26824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356
This theorem is referenced by:  uhgr3cyclex  27953
  Copyright terms: Public domain W3C validator