MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr3cyclexlem Structured version   Visualization version   GIF version

Theorem uhgr3cyclexlem 27546
Description: Lemma for uhgr3cyclex 27547. (Contributed by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
uhgr3cyclex.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgr3cyclexlem ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → 𝐽𝐾)

Proof of Theorem uhgr3cyclexlem
StepHypRef Expression
1 fveq2 6433 . . . . . . . . 9 (𝐽 = 𝐾 → (𝐼𝐽) = (𝐼𝐾))
21eqeq2d 2835 . . . . . . . 8 (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼𝐽) ↔ {𝐵, 𝐶} = (𝐼𝐾)))
3 eqeq2 2836 . . . . . . . . . . . 12 ((𝐼𝐾) = {𝐶, 𝐴} → ({𝐵, 𝐶} = (𝐼𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴}))
43eqcoms 2833 . . . . . . . . . . 11 ({𝐶, 𝐴} = (𝐼𝐾) → ({𝐵, 𝐶} = (𝐼𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴}))
5 prcom 4485 . . . . . . . . . . . . . 14 {𝐶, 𝐴} = {𝐴, 𝐶}
65eqeq1i 2830 . . . . . . . . . . . . 13 ({𝐶, 𝐴} = {𝐵, 𝐶} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
7 simpl 476 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
8 simpr 479 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
97, 8preq1b 4593 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵𝑉) → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵))
109biimpcd 241 . . . . . . . . . . . . 13 ({𝐴, 𝐶} = {𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
116, 10sylbi 209 . . . . . . . . . . . 12 ({𝐶, 𝐴} = {𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
1211eqcoms 2833 . . . . . . . . . . 11 ({𝐵, 𝐶} = {𝐶, 𝐴} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
134, 12syl6bi 245 . . . . . . . . . 10 ({𝐶, 𝐴} = (𝐼𝐾) → ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
1413adantl 475 . . . . . . . . 9 ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
1514com12 32 . . . . . . . 8 ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
162, 15syl6bi 245 . . . . . . 7 (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼𝐽) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))))
1716adantld 486 . . . . . 6 (𝐽 = 𝐾 → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))))
1817com14 96 . . . . 5 ((𝐴𝑉𝐵𝑉) → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → (𝐽 = 𝐾𝐴 = 𝐵))))
1918imp32 411 . . . 4 (((𝐴𝑉𝐵𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → (𝐽 = 𝐾𝐴 = 𝐵))
2019necon3d 3020 . . 3 (((𝐴𝑉𝐵𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → (𝐴𝐵𝐽𝐾))
2120impancom 445 . 2 (((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾))) → 𝐽𝐾))
2221imp 397 1 ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → 𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999  {cpr 4399  dom cdm 5342  cfv 6123  Vtxcvtx 26294  iEdgciedg 26295  Edgcedg 26345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-iota 6086  df-fv 6131
This theorem is referenced by:  uhgr3cyclex  27547
  Copyright terms: Public domain W3C validator