Proof of Theorem uhgr3cyclexlem
Step | Hyp | Ref
| Expression |
1 | | fveq2 6766 |
. . . . . . . . 9
⊢ (𝐽 = 𝐾 → (𝐼‘𝐽) = (𝐼‘𝐾)) |
2 | 1 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼‘𝐽) ↔ {𝐵, 𝐶} = (𝐼‘𝐾))) |
3 | | eqeq2 2750 |
. . . . . . . . . . . 12
⊢ ((𝐼‘𝐾) = {𝐶, 𝐴} → ({𝐵, 𝐶} = (𝐼‘𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴})) |
4 | 3 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ ({𝐶, 𝐴} = (𝐼‘𝐾) → ({𝐵, 𝐶} = (𝐼‘𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴})) |
5 | | prcom 4668 |
. . . . . . . . . . . . . 14
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
6 | 5 | eqeq1i 2743 |
. . . . . . . . . . . . 13
⊢ ({𝐶, 𝐴} = {𝐵, 𝐶} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
7 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
8 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) |
9 | 7, 8 | preq1b 4777 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |
10 | 9 | biimpcd 248 |
. . . . . . . . . . . . 13
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)) |
11 | 6, 10 | sylbi 216 |
. . . . . . . . . . . 12
⊢ ({𝐶, 𝐴} = {𝐵, 𝐶} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)) |
12 | 11 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ ({𝐵, 𝐶} = {𝐶, 𝐴} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)) |
13 | 4, 12 | syl6bi 252 |
. . . . . . . . . 10
⊢ ({𝐶, 𝐴} = (𝐼‘𝐾) → ({𝐵, 𝐶} = (𝐼‘𝐾) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵))) |
14 | 13 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → ({𝐵, 𝐶} = (𝐼‘𝐾) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵))) |
15 | 14 | com12 32 |
. . . . . . . 8
⊢ ({𝐵, 𝐶} = (𝐼‘𝐾) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵))) |
16 | 2, 15 | syl6bi 252 |
. . . . . . 7
⊢ (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼‘𝐽) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)))) |
17 | 16 | adantld 491 |
. . . . . 6
⊢ (𝐽 = 𝐾 → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)))) |
18 | 17 | com14 96 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → (𝐽 = 𝐾 → 𝐴 = 𝐵)))) |
19 | 18 | imp32 419 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → (𝐽 = 𝐾 → 𝐴 = 𝐵)) |
20 | 19 | necon3d 2964 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → (𝐴 ≠ 𝐵 → 𝐽 ≠ 𝐾)) |
21 | 20 | impancom 452 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾))) → 𝐽 ≠ 𝐾)) |
22 | 21 | imp 407 |
1
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → 𝐽 ≠ 𝐾) |