Proof of Theorem uhgr3cyclexlem
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝐽 = 𝐾 → (𝐼‘𝐽) = (𝐼‘𝐾)) |
| 2 | 1 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼‘𝐽) ↔ {𝐵, 𝐶} = (𝐼‘𝐾))) |
| 3 | | eqeq2 2748 |
. . . . . . . . . . . 12
⊢ ((𝐼‘𝐾) = {𝐶, 𝐴} → ({𝐵, 𝐶} = (𝐼‘𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴})) |
| 4 | 3 | eqcoms 2744 |
. . . . . . . . . . 11
⊢ ({𝐶, 𝐴} = (𝐼‘𝐾) → ({𝐵, 𝐶} = (𝐼‘𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴})) |
| 5 | | prcom 4713 |
. . . . . . . . . . . . . 14
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
| 6 | 5 | eqeq1i 2741 |
. . . . . . . . . . . . 13
⊢ ({𝐶, 𝐴} = {𝐵, 𝐶} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
| 7 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
| 8 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) |
| 9 | 7, 8 | preq1b 4827 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) |
| 10 | 9 | biimpcd 249 |
. . . . . . . . . . . . 13
⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)) |
| 11 | 6, 10 | sylbi 217 |
. . . . . . . . . . . 12
⊢ ({𝐶, 𝐴} = {𝐵, 𝐶} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)) |
| 12 | 11 | eqcoms 2744 |
. . . . . . . . . . 11
⊢ ({𝐵, 𝐶} = {𝐶, 𝐴} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)) |
| 13 | 4, 12 | biimtrdi 253 |
. . . . . . . . . 10
⊢ ({𝐶, 𝐴} = (𝐼‘𝐾) → ({𝐵, 𝐶} = (𝐼‘𝐾) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵))) |
| 14 | 13 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → ({𝐵, 𝐶} = (𝐼‘𝐾) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵))) |
| 15 | 14 | com12 32 |
. . . . . . . 8
⊢ ({𝐵, 𝐶} = (𝐼‘𝐾) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵))) |
| 16 | 2, 15 | biimtrdi 253 |
. . . . . . 7
⊢ (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼‘𝐽) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)))) |
| 17 | 16 | adantld 490 |
. . . . . 6
⊢ (𝐽 = 𝐾 → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 = 𝐵)))) |
| 18 | 17 | com14 96 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)) → (𝐽 = 𝐾 → 𝐴 = 𝐵)))) |
| 19 | 18 | imp32 418 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → (𝐽 = 𝐾 → 𝐴 = 𝐵)) |
| 20 | 19 | necon3d 2954 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → (𝐴 ≠ 𝐵 → 𝐽 ≠ 𝐾)) |
| 21 | 20 | impancom 451 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾))) → 𝐽 ≠ 𝐾)) |
| 22 | 21 | imp 406 |
1
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼‘𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼‘𝐾)))) → 𝐽 ≠ 𝐾) |