Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prrngorngo Structured version   Visualization version   GIF version

Theorem prrngorngo 38111
Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
prrngorngo (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)

Proof of Theorem prrngorngo
StepHypRef Expression
1 eqid 2733 . . 3 (1st𝑅) = (1st𝑅)
2 eqid 2733 . . 3 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
31, 2isprrngo 38110 . 2 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st𝑅))} ∈ (PrIdl‘𝑅)))
43simplbi 497 1 (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  {csn 4575  cfv 6486  1st c1st 7925  GIdcgi 30472  RingOpscrngo 37954  PrIdlcpridl 38068  PrRingcprrng 38106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-prrngo 38108
This theorem is referenced by:  isdmn2  38115
  Copyright terms: Public domain W3C validator