Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prrngorngo | Structured version Visualization version GIF version |
Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
prrngorngo | ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2739 | . . 3 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
3 | 1, 2 | isprrngo 36114 | . 2 ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st ‘𝑅))} ∈ (PrIdl‘𝑅))) |
4 | 3 | simplbi 501 | 1 ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 {csn 4558 ‘cfv 6415 1st c1st 7799 GIdcgi 28728 RingOpscrngo 35958 PrIdlcpridl 36072 PrRingcprrng 36110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-prrngo 36112 |
This theorem is referenced by: isdmn2 36119 |
Copyright terms: Public domain | W3C validator |