![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prrngorngo | Structured version Visualization version GIF version |
Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
prrngorngo | ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2733 | . . 3 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
3 | 1, 2 | isprrngo 37997 | . 2 ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st ‘𝑅))} ∈ (PrIdl‘𝑅))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 {csn 4630 ‘cfv 6558 1st c1st 8005 GIdcgi 30500 RingOpscrngo 37841 PrIdlcpridl 37955 PrRingcprrng 37993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-iota 6510 df-fv 6566 df-prrngo 37995 |
This theorem is referenced by: isdmn2 38002 |
Copyright terms: Public domain | W3C validator |