Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prrngorngo | Structured version Visualization version GIF version |
Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
prrngorngo | ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2739 | . . 3 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
3 | 1, 2 | isprrngo 35863 | . 2 ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st ‘𝑅))} ∈ (PrIdl‘𝑅))) |
4 | 3 | simplbi 501 | 1 ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 {csn 4526 ‘cfv 6349 1st c1st 7724 GIdcgi 28437 RingOpscrngo 35707 PrIdlcpridl 35821 PrRingcprrng 35859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-rab 3063 df-v 3402 df-un 3858 df-in 3860 df-ss 3870 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-iota 6307 df-fv 6357 df-prrngo 35861 |
This theorem is referenced by: isdmn2 35868 |
Copyright terms: Public domain | W3C validator |