| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prrngorngo | Structured version Visualization version GIF version | ||
| Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| prrngorngo | ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
| 3 | 1, 2 | isprrngo 38039 | . 2 ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st ‘𝑅))} ∈ (PrIdl‘𝑅))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4591 ‘cfv 6513 1st c1st 7968 GIdcgi 30425 RingOpscrngo 37883 PrIdlcpridl 37997 PrRingcprrng 38035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-prrngo 38037 |
| This theorem is referenced by: isdmn2 38044 |
| Copyright terms: Public domain | W3C validator |