Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prrngorngo Structured version   Visualization version   GIF version

Theorem prrngorngo 36115
Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
prrngorngo (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)

Proof of Theorem prrngorngo
StepHypRef Expression
1 eqid 2739 . . 3 (1st𝑅) = (1st𝑅)
2 eqid 2739 . . 3 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
31, 2isprrngo 36114 . 2 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st𝑅))} ∈ (PrIdl‘𝑅)))
43simplbi 501 1 (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  {csn 4558  cfv 6415  1st c1st 7799  GIdcgi 28728  RingOpscrngo 35958  PrIdlcpridl 36072  PrRingcprrng 36110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6373  df-fv 6423  df-prrngo 36112
This theorem is referenced by:  isdmn2  36119
  Copyright terms: Public domain W3C validator