![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prrngorngo | Structured version Visualization version GIF version |
Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
prrngorngo | ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2797 | . . 3 ⊢ (GId‘(1st ‘𝑅)) = (GId‘(1st ‘𝑅)) | |
3 | 1, 2 | isprrngo 34328 | . 2 ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st ‘𝑅))} ∈ (PrIdl‘𝑅))) |
4 | 3 | simplbi 492 | 1 ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 {csn 4366 ‘cfv 6099 1st c1st 7397 GIdcgi 27862 RingOpscrngo 34172 PrIdlcpridl 34286 PrRingcprrng 34324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-iota 6062 df-fv 6107 df-prrngo 34326 |
This theorem is referenced by: isdmn2 34333 |
Copyright terms: Public domain | W3C validator |