Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prrngorngo Structured version   Visualization version   GIF version

Theorem prrngorngo 37998
Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
prrngorngo (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)

Proof of Theorem prrngorngo
StepHypRef Expression
1 eqid 2733 . . 3 (1st𝑅) = (1st𝑅)
2 eqid 2733 . . 3 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
31, 2isprrngo 37997 . 2 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st𝑅))} ∈ (PrIdl‘𝑅)))
43simplbi 497 1 (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  {csn 4630  cfv 6558  1st c1st 8005  GIdcgi 30500  RingOpscrngo 37841  PrIdlcpridl 37955  PrRingcprrng 37993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-iota 6510  df-fv 6566  df-prrngo 37995
This theorem is referenced by:  isdmn2  38002
  Copyright terms: Public domain W3C validator