Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prrngorngo Structured version   Visualization version   GIF version

Theorem prrngorngo 38040
Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
prrngorngo (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)

Proof of Theorem prrngorngo
StepHypRef Expression
1 eqid 2730 . . 3 (1st𝑅) = (1st𝑅)
2 eqid 2730 . . 3 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
31, 2isprrngo 38039 . 2 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {(GId‘(1st𝑅))} ∈ (PrIdl‘𝑅)))
43simplbi 497 1 (𝑅 ∈ PrRing → 𝑅 ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {csn 4591  cfv 6513  1st c1st 7968  GIdcgi 30425  RingOpscrngo 37883  PrIdlcpridl 37997  PrRingcprrng 38035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-prrngo 38037
This theorem is referenced by:  isdmn2  38044
  Copyright terms: Public domain W3C validator