| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq12d | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| psseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| psseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| psseq12d | ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psseq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | psseq1d 4077 | . 2 ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| 3 | psseq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | psseq2d 4078 | . 2 ⊢ (𝜑 → (𝐵 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ⊊ wpss 3934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ne 2932 df-ss 3950 df-pss 3953 |
| This theorem is referenced by: fin23lem32 10367 fin23lem34 10369 fin23lem35 10370 fin23lem41 10375 isf32lem5 10380 isf32lem6 10381 isf32lem11 10386 compssiso 10397 chnle 31480 |
| Copyright terms: Public domain | W3C validator |