![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq12d | Structured version Visualization version GIF version |
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
psseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
psseq12d | ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | psseq1d 4118 | . 2 ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
3 | psseq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | psseq2d 4119 | . 2 ⊢ (𝜑 → (𝐵 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 df-ss 3993 df-pss 3996 |
This theorem is referenced by: fin23lem32 10413 fin23lem34 10415 fin23lem35 10416 fin23lem41 10421 isf32lem5 10426 isf32lem6 10427 isf32lem11 10432 compssiso 10443 chnle 31546 |
Copyright terms: Public domain | W3C validator |