MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem41 Structured version   Visualization version   GIF version

Theorem fin23lem41 10039
Description: Lemma for fin23 10076. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem41 (𝐴𝐹𝐴 ∈ FinIII)
Distinct variable groups:   𝑔,𝑎,𝑥,𝐴   𝐹,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑔)

Proof of Theorem fin23lem41
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8704 . . . . 5 (ω ≼ 𝒫 𝐴 → ∃𝑏 𝑏:ω–1-1→𝒫 𝐴)
2 fin23lem40.f . . . . . . . . . 10 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
32fin23lem33 10032 . . . . . . . . 9 (𝐴𝐹 → ∃𝑐𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)))
43adantl 481 . . . . . . . 8 ((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) → ∃𝑐𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)))
5 ssv 3941 . . . . . . . . . . 11 𝒫 𝐴 ⊆ V
6 f1ss 6660 . . . . . . . . . . 11 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝒫 𝐴 ⊆ V) → 𝑏:ω–1-1→V)
75, 6mpan2 687 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴𝑏:ω–1-1→V)
87ad2antrr 722 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → 𝑏:ω–1-1→V)
9 f1f 6654 . . . . . . . . . . . 12 (𝑏:ω–1-1→𝒫 𝐴𝑏:ω⟶𝒫 𝐴)
10 frn 6591 . . . . . . . . . . . 12 (𝑏:ω⟶𝒫 𝐴 → ran 𝑏 ⊆ 𝒫 𝐴)
11 uniss 4844 . . . . . . . . . . . 12 (ran 𝑏 ⊆ 𝒫 𝐴 ran 𝑏 𝒫 𝐴)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝑏:ω–1-1→𝒫 𝐴 ran 𝑏 𝒫 𝐴)
13 unipw 5360 . . . . . . . . . . 11 𝒫 𝐴 = 𝐴
1412, 13sseqtrdi 3967 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 ran 𝑏𝐴)
1514ad2antrr 722 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ran 𝑏𝐴)
16 f1eq1 6649 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → (𝑑:ω–1-1→V ↔ 𝑒:ω–1-1→V))
17 rneq 5834 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → ran 𝑑 = ran 𝑒)
1817unieqd 4850 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 ran 𝑑 = ran 𝑒)
1918sseq1d 3948 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ( ran 𝑑𝐴 ran 𝑒𝐴))
2016, 19anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑒 → ((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) ↔ (𝑒:ω–1-1→V ∧ ran 𝑒𝐴)))
21 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (𝑐𝑑) = (𝑐𝑒))
22 f1eq1 6649 . . . . . . . . . . . . . . 15 ((𝑐𝑑) = (𝑐𝑒) → ((𝑐𝑑):ω–1-1→V ↔ (𝑐𝑒):ω–1-1→V))
2321, 22syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ((𝑐𝑑):ω–1-1→V ↔ (𝑐𝑒):ω–1-1→V))
2421rneqd 5836 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → ran (𝑐𝑑) = ran (𝑐𝑒))
2524unieqd 4850 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 ran (𝑐𝑑) = ran (𝑐𝑒))
2625, 18psseq12d 4025 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ( ran (𝑐𝑑) ⊊ ran 𝑑 ran (𝑐𝑒) ⊊ ran 𝑒))
2723, 26anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑒 → (((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑) ↔ ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
2820, 27imbi12d 344 . . . . . . . . . . . 12 (𝑑 = 𝑒 → (((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) ↔ ((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒))))
2928cbvalvw 2040 . . . . . . . . . . 11 (∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) ↔ ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
3029biimpi 215 . . . . . . . . . 10 (∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) → ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
3130adantl 481 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
32 eqid 2738 . . . . . . . . 9 (rec(𝑐, 𝑏) ↾ ω) = (rec(𝑐, 𝑏) ↾ ω)
332, 8, 15, 31, 32fin23lem39 10037 . . . . . . . 8 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ¬ 𝐴𝐹)
344, 33exlimddv 1939 . . . . . . 7 ((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) → ¬ 𝐴𝐹)
3534pm2.01da 795 . . . . . 6 (𝑏:ω–1-1→𝒫 𝐴 → ¬ 𝐴𝐹)
3635exlimiv 1934 . . . . 5 (∃𝑏 𝑏:ω–1-1→𝒫 𝐴 → ¬ 𝐴𝐹)
371, 36syl 17 . . . 4 (ω ≼ 𝒫 𝐴 → ¬ 𝐴𝐹)
3837con2i 139 . . 3 (𝐴𝐹 → ¬ ω ≼ 𝒫 𝐴)
39 pwexg 5296 . . . 4 (𝐴𝐹 → 𝒫 𝐴 ∈ V)
40 isfin4-2 10001 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
4139, 40syl 17 . . 3 (𝐴𝐹 → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
4238, 41mpbird 256 . 2 (𝐴𝐹 → 𝒫 𝐴 ∈ FinIV)
43 isfin3 9983 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
4442, 43sylibr 233 1 (𝐴𝐹𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  Vcvv 3422  wss 3883  wpss 3884  𝒫 cpw 4530   cuni 4836   cint 4876   class class class wbr 5070  ran crn 5581  cres 5582  suc csuc 6253  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  ωcom 7687  reccrdg 8211  m cmap 8573  cdom 8689  FinIVcfin4 9967  FinIIIcfin3 9968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-fin4 9974  df-fin3 9975
This theorem is referenced by:  isf33lem  10053
  Copyright terms: Public domain W3C validator