Step | Hyp | Ref
| Expression |
1 | | brdomi 8950 |
. . . . 5
β’ (Ο
βΌ π« π΄ β
βπ π:Οβ1-1βπ« π΄) |
2 | | fin23lem40.f |
. . . . . . . . . 10
β’ πΉ = {π β£ βπ β (π« π βm Ο)(βπ₯ β Ο (πβsuc π₯) β (πβπ₯) β β© ran
π β ran π)} |
3 | 2 | fin23lem33 10336 |
. . . . . . . . 9
β’ (π΄ β πΉ β βπβπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) |
4 | 3 | adantl 482 |
. . . . . . . 8
β’ ((π:Οβ1-1βπ« π΄ β§ π΄ β πΉ) β βπβπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) |
5 | | ssv 4005 |
. . . . . . . . . . 11
β’ π«
π΄ β
V |
6 | | f1ss 6790 |
. . . . . . . . . . 11
β’ ((π:Οβ1-1βπ« π΄ β§ π« π΄ β V) β π:Οβ1-1βV) |
7 | 5, 6 | mpan2 689 |
. . . . . . . . . 10
β’ (π:Οβ1-1βπ« π΄ β π:Οβ1-1βV) |
8 | 7 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π:Οβ1-1βπ« π΄ β§ π΄ β πΉ) β§ βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) β π:Οβ1-1βV) |
9 | | f1f 6784 |
. . . . . . . . . . . 12
β’ (π:Οβ1-1βπ« π΄ β π:ΟβΆπ« π΄) |
10 | | frn 6721 |
. . . . . . . . . . . 12
β’ (π:ΟβΆπ« π΄ β ran π β π« π΄) |
11 | | uniss 4915 |
. . . . . . . . . . . 12
β’ (ran
π β π« π΄ β βͺ ran π β βͺ
π« π΄) |
12 | 9, 10, 11 | 3syl 18 |
. . . . . . . . . . 11
β’ (π:Οβ1-1βπ« π΄ β βͺ ran
π β βͺ π« π΄) |
13 | | unipw 5449 |
. . . . . . . . . . 11
β’ βͺ π« π΄ = π΄ |
14 | 12, 13 | sseqtrdi 4031 |
. . . . . . . . . 10
β’ (π:Οβ1-1βπ« π΄ β βͺ ran
π β π΄) |
15 | 14 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π:Οβ1-1βπ« π΄ β§ π΄ β πΉ) β§ βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) β βͺ ran π β π΄) |
16 | | f1eq1 6779 |
. . . . . . . . . . . . . 14
β’ (π = π β (π:Οβ1-1βV β π:Οβ1-1βV)) |
17 | | rneq 5933 |
. . . . . . . . . . . . . . . 16
β’ (π = π β ran π = ran π) |
18 | 17 | unieqd 4921 |
. . . . . . . . . . . . . . 15
β’ (π = π β βͺ ran
π = βͺ ran π) |
19 | 18 | sseq1d 4012 |
. . . . . . . . . . . . . 14
β’ (π = π β (βͺ ran
π β π΄ β βͺ ran
π β π΄)) |
20 | 16, 19 | anbi12d 631 |
. . . . . . . . . . . . 13
β’ (π = π β ((π:Οβ1-1βV β§ βͺ ran π β π΄) β (π:Οβ1-1βV β§ βͺ ran π β π΄))) |
21 | | fveq2 6888 |
. . . . . . . . . . . . . . 15
β’ (π = π β (πβπ) = (πβπ)) |
22 | | f1eq1 6779 |
. . . . . . . . . . . . . . 15
β’ ((πβπ) = (πβπ) β ((πβπ):Οβ1-1βV β (πβπ):Οβ1-1βV)) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π = π β ((πβπ):Οβ1-1βV β (πβπ):Οβ1-1βV)) |
24 | 21 | rneqd 5935 |
. . . . . . . . . . . . . . . 16
β’ (π = π β ran (πβπ) = ran (πβπ)) |
25 | 24 | unieqd 4921 |
. . . . . . . . . . . . . . 15
β’ (π = π β βͺ ran
(πβπ) = βͺ ran (πβπ)) |
26 | 25, 18 | psseq12d 4093 |
. . . . . . . . . . . . . 14
β’ (π = π β (βͺ ran
(πβπ) β βͺ ran
π β βͺ ran (πβπ) β βͺ ran
π)) |
27 | 23, 26 | anbi12d 631 |
. . . . . . . . . . . . 13
β’ (π = π β (((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) |
28 | 20, 27 | imbi12d 344 |
. . . . . . . . . . . 12
β’ (π = π β (((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π)) β ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π)))) |
29 | 28 | cbvalvw 2039 |
. . . . . . . . . . 11
β’
(βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π)) β βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) |
30 | 29 | biimpi 215 |
. . . . . . . . . 10
β’
(βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π)) β βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) |
31 | 30 | adantl 482 |
. . . . . . . . 9
β’ (((π:Οβ1-1βπ« π΄ β§ π΄ β πΉ) β§ βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) β βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) |
32 | | eqid 2732 |
. . . . . . . . 9
β’
(rec(π, π) βΎ Ο) = (rec(π, π) βΎ Ο) |
33 | 2, 8, 15, 31, 32 | fin23lem39 10341 |
. . . . . . . 8
β’ (((π:Οβ1-1βπ« π΄ β§ π΄ β πΉ) β§ βπ((π:Οβ1-1βV β§ βͺ ran π β π΄) β ((πβπ):Οβ1-1βV β§ βͺ ran (πβπ) β βͺ ran
π))) β Β¬ π΄ β πΉ) |
34 | 4, 33 | exlimddv 1938 |
. . . . . . 7
β’ ((π:Οβ1-1βπ« π΄ β§ π΄ β πΉ) β Β¬ π΄ β πΉ) |
35 | 34 | pm2.01da 797 |
. . . . . 6
β’ (π:Οβ1-1βπ« π΄ β Β¬ π΄ β πΉ) |
36 | 35 | exlimiv 1933 |
. . . . 5
β’
(βπ π:Οβ1-1βπ« π΄ β Β¬ π΄ β πΉ) |
37 | 1, 36 | syl 17 |
. . . 4
β’ (Ο
βΌ π« π΄ β
Β¬ π΄ β πΉ) |
38 | 37 | con2i 139 |
. . 3
β’ (π΄ β πΉ β Β¬ Ο βΌ π«
π΄) |
39 | | pwexg 5375 |
. . . 4
β’ (π΄ β πΉ β π« π΄ β V) |
40 | | isfin4-2 10305 |
. . . 4
β’
(π« π΄ β
V β (π« π΄
β FinIV β Β¬ Ο βΌ π« π΄)) |
41 | 39, 40 | syl 17 |
. . 3
β’ (π΄ β πΉ β (π« π΄ β FinIV β Β¬
Ο βΌ π« π΄)) |
42 | 38, 41 | mpbird 256 |
. 2
β’ (π΄ β πΉ β π« π΄ β FinIV) |
43 | | isfin3 10287 |
. 2
β’ (π΄ β FinIII β
π« π΄ β
FinIV) |
44 | 42, 43 | sylibr 233 |
1
β’ (π΄ β πΉ β π΄ β FinIII) |