MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem41 Structured version   Visualization version   GIF version

Theorem fin23lem41 10343
Description: Lemma for fin23 10380. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
Assertion
Ref Expression
fin23lem41 (𝐴 ∈ 𝐹 β†’ 𝐴 ∈ FinIII)
Distinct variable groups:   𝑔,π‘Ž,π‘₯,𝐴   𝐹,π‘Ž
Allowed substitution hints:   𝐹(π‘₯,𝑔)

Proof of Theorem fin23lem41
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8950 . . . . 5 (Ο‰ β‰Ό 𝒫 𝐴 β†’ βˆƒπ‘ 𝑏:ω–1-1→𝒫 𝐴)
2 fin23lem40.f . . . . . . . . . 10 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
32fin23lem33 10336 . . . . . . . . 9 (𝐴 ∈ 𝐹 β†’ βˆƒπ‘βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
43adantl 482 . . . . . . . 8 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) β†’ βˆƒπ‘βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
5 ssv 4005 . . . . . . . . . . 11 𝒫 𝐴 βŠ† V
6 f1ss 6790 . . . . . . . . . . 11 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝒫 𝐴 βŠ† V) β†’ 𝑏:ω–1-1β†’V)
75, 6mpan2 689 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 β†’ 𝑏:ω–1-1β†’V)
87ad2antrr 724 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ 𝑏:ω–1-1β†’V)
9 f1f 6784 . . . . . . . . . . . 12 (𝑏:ω–1-1→𝒫 𝐴 β†’ 𝑏:Ο‰βŸΆπ’« 𝐴)
10 frn 6721 . . . . . . . . . . . 12 (𝑏:Ο‰βŸΆπ’« 𝐴 β†’ ran 𝑏 βŠ† 𝒫 𝐴)
11 uniss 4915 . . . . . . . . . . . 12 (ran 𝑏 βŠ† 𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† βˆͺ 𝒫 𝐴)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝑏:ω–1-1→𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† βˆͺ 𝒫 𝐴)
13 unipw 5449 . . . . . . . . . . 11 βˆͺ 𝒫 𝐴 = 𝐴
1412, 13sseqtrdi 4031 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† 𝐴)
1514ad2antrr 724 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ βˆͺ ran 𝑏 βŠ† 𝐴)
16 f1eq1 6779 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (𝑑:ω–1-1β†’V ↔ 𝑒:ω–1-1β†’V))
17 rneq 5933 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 β†’ ran 𝑑 = ran 𝑒)
1817unieqd 4921 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ βˆͺ ran 𝑑 = βˆͺ ran 𝑒)
1918sseq1d 4012 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (βˆͺ ran 𝑑 βŠ† 𝐴 ↔ βˆͺ ran 𝑒 βŠ† 𝐴))
2016, 19anbi12d 631 . . . . . . . . . . . . 13 (𝑑 = 𝑒 β†’ ((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) ↔ (𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴)))
21 fveq2 6888 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ (π‘β€˜π‘‘) = (π‘β€˜π‘’))
22 f1eq1 6779 . . . . . . . . . . . . . . 15 ((π‘β€˜π‘‘) = (π‘β€˜π‘’) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ↔ (π‘β€˜π‘’):ω–1-1β†’V))
2321, 22syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ↔ (π‘β€˜π‘’):ω–1-1β†’V))
2421rneqd 5935 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 β†’ ran (π‘β€˜π‘‘) = ran (π‘β€˜π‘’))
2524unieqd 4921 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ βˆͺ ran (π‘β€˜π‘‘) = βˆͺ ran (π‘β€˜π‘’))
2625, 18psseq12d 4093 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑 ↔ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒))
2723, 26anbi12d 631 . . . . . . . . . . . . 13 (𝑑 = 𝑒 β†’ (((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑) ↔ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
2820, 27imbi12d 344 . . . . . . . . . . . 12 (𝑑 = 𝑒 β†’ (((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) ↔ ((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒))))
2928cbvalvw 2039 . . . . . . . . . . 11 (βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) ↔ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
3029biimpi 215 . . . . . . . . . 10 (βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) β†’ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
3130adantl 482 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
32 eqid 2732 . . . . . . . . 9 (rec(𝑐, 𝑏) β†Ύ Ο‰) = (rec(𝑐, 𝑏) β†Ύ Ο‰)
332, 8, 15, 31, 32fin23lem39 10341 . . . . . . . 8 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ Β¬ 𝐴 ∈ 𝐹)
344, 33exlimddv 1938 . . . . . . 7 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) β†’ Β¬ 𝐴 ∈ 𝐹)
3534pm2.01da 797 . . . . . 6 (𝑏:ω–1-1→𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
3635exlimiv 1933 . . . . 5 (βˆƒπ‘ 𝑏:ω–1-1→𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
371, 36syl 17 . . . 4 (Ο‰ β‰Ό 𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
3837con2i 139 . . 3 (𝐴 ∈ 𝐹 β†’ Β¬ Ο‰ β‰Ό 𝒫 𝐴)
39 pwexg 5375 . . . 4 (𝐴 ∈ 𝐹 β†’ 𝒫 𝐴 ∈ V)
40 isfin4-2 10305 . . . 4 (𝒫 𝐴 ∈ V β†’ (𝒫 𝐴 ∈ FinIV ↔ Β¬ Ο‰ β‰Ό 𝒫 𝐴))
4139, 40syl 17 . . 3 (𝐴 ∈ 𝐹 β†’ (𝒫 𝐴 ∈ FinIV ↔ Β¬ Ο‰ β‰Ό 𝒫 𝐴))
4238, 41mpbird 256 . 2 (𝐴 ∈ 𝐹 β†’ 𝒫 𝐴 ∈ FinIV)
43 isfin3 10287 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
4442, 43sylibr 233 1 (𝐴 ∈ 𝐹 β†’ 𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396  βˆ€wal 1539   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3947   ⊊ wpss 3948  π’« cpw 4601  βˆͺ cuni 4907  βˆ© cint 4949   class class class wbr 5147  ran crn 5676   β†Ύ cres 5677  suc csuc 6363  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€˜cfv 6540  (class class class)co 7405  Ο‰com 7851  reccrdg 8405   ↑m cmap 8816   β‰Ό cdom 8933  FinIVcfin4 10271  FinIIIcfin3 10272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-seqom 8444  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-fin4 10278  df-fin3 10279
This theorem is referenced by:  isf33lem  10357
  Copyright terms: Public domain W3C validator