MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem41 Structured version   Visualization version   GIF version

Theorem fin23lem41 10108
Description: Lemma for fin23 10145. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem41 (𝐴𝐹𝐴 ∈ FinIII)
Distinct variable groups:   𝑔,𝑎,𝑥,𝐴   𝐹,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑔)

Proof of Theorem fin23lem41
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8748 . . . . 5 (ω ≼ 𝒫 𝐴 → ∃𝑏 𝑏:ω–1-1→𝒫 𝐴)
2 fin23lem40.f . . . . . . . . . 10 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
32fin23lem33 10101 . . . . . . . . 9 (𝐴𝐹 → ∃𝑐𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)))
43adantl 482 . . . . . . . 8 ((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) → ∃𝑐𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)))
5 ssv 3945 . . . . . . . . . . 11 𝒫 𝐴 ⊆ V
6 f1ss 6676 . . . . . . . . . . 11 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝒫 𝐴 ⊆ V) → 𝑏:ω–1-1→V)
75, 6mpan2 688 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴𝑏:ω–1-1→V)
87ad2antrr 723 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → 𝑏:ω–1-1→V)
9 f1f 6670 . . . . . . . . . . . 12 (𝑏:ω–1-1→𝒫 𝐴𝑏:ω⟶𝒫 𝐴)
10 frn 6607 . . . . . . . . . . . 12 (𝑏:ω⟶𝒫 𝐴 → ran 𝑏 ⊆ 𝒫 𝐴)
11 uniss 4847 . . . . . . . . . . . 12 (ran 𝑏 ⊆ 𝒫 𝐴 ran 𝑏 𝒫 𝐴)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝑏:ω–1-1→𝒫 𝐴 ran 𝑏 𝒫 𝐴)
13 unipw 5366 . . . . . . . . . . 11 𝒫 𝐴 = 𝐴
1412, 13sseqtrdi 3971 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 ran 𝑏𝐴)
1514ad2antrr 723 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ran 𝑏𝐴)
16 f1eq1 6665 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → (𝑑:ω–1-1→V ↔ 𝑒:ω–1-1→V))
17 rneq 5845 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → ran 𝑑 = ran 𝑒)
1817unieqd 4853 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 ran 𝑑 = ran 𝑒)
1918sseq1d 3952 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ( ran 𝑑𝐴 ran 𝑒𝐴))
2016, 19anbi12d 631 . . . . . . . . . . . . 13 (𝑑 = 𝑒 → ((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) ↔ (𝑒:ω–1-1→V ∧ ran 𝑒𝐴)))
21 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (𝑐𝑑) = (𝑐𝑒))
22 f1eq1 6665 . . . . . . . . . . . . . . 15 ((𝑐𝑑) = (𝑐𝑒) → ((𝑐𝑑):ω–1-1→V ↔ (𝑐𝑒):ω–1-1→V))
2321, 22syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ((𝑐𝑑):ω–1-1→V ↔ (𝑐𝑒):ω–1-1→V))
2421rneqd 5847 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → ran (𝑐𝑑) = ran (𝑐𝑒))
2524unieqd 4853 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 ran (𝑐𝑑) = ran (𝑐𝑒))
2625, 18psseq12d 4029 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ( ran (𝑐𝑑) ⊊ ran 𝑑 ran (𝑐𝑒) ⊊ ran 𝑒))
2723, 26anbi12d 631 . . . . . . . . . . . . 13 (𝑑 = 𝑒 → (((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑) ↔ ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
2820, 27imbi12d 345 . . . . . . . . . . . 12 (𝑑 = 𝑒 → (((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) ↔ ((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒))))
2928cbvalvw 2039 . . . . . . . . . . 11 (∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) ↔ ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
3029biimpi 215 . . . . . . . . . 10 (∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) → ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
3130adantl 482 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
32 eqid 2738 . . . . . . . . 9 (rec(𝑐, 𝑏) ↾ ω) = (rec(𝑐, 𝑏) ↾ ω)
332, 8, 15, 31, 32fin23lem39 10106 . . . . . . . 8 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ¬ 𝐴𝐹)
344, 33exlimddv 1938 . . . . . . 7 ((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) → ¬ 𝐴𝐹)
3534pm2.01da 796 . . . . . 6 (𝑏:ω–1-1→𝒫 𝐴 → ¬ 𝐴𝐹)
3635exlimiv 1933 . . . . 5 (∃𝑏 𝑏:ω–1-1→𝒫 𝐴 → ¬ 𝐴𝐹)
371, 36syl 17 . . . 4 (ω ≼ 𝒫 𝐴 → ¬ 𝐴𝐹)
3837con2i 139 . . 3 (𝐴𝐹 → ¬ ω ≼ 𝒫 𝐴)
39 pwexg 5301 . . . 4 (𝐴𝐹 → 𝒫 𝐴 ∈ V)
40 isfin4-2 10070 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
4139, 40syl 17 . . 3 (𝐴𝐹 → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
4238, 41mpbird 256 . 2 (𝐴𝐹 → 𝒫 𝐴 ∈ FinIV)
43 isfin3 10052 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
4442, 43sylibr 233 1 (𝐴𝐹𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  Vcvv 3432  wss 3887  wpss 3888  𝒫 cpw 4533   cuni 4839   cint 4879   class class class wbr 5074  ran crn 5590  cres 5591  suc csuc 6268  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240  m cmap 8615  cdom 8731  FinIVcfin4 10036  FinIIIcfin3 10037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-fin4 10043  df-fin3 10044
This theorem is referenced by:  isf33lem  10122
  Copyright terms: Public domain W3C validator