Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem41 Structured version   Visualization version   GIF version

Theorem fin23lem41 9763
 Description: Lemma for fin23 9800. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem41 (𝐴𝐹𝐴 ∈ FinIII)
Distinct variable groups:   𝑔,𝑎,𝑥,𝐴   𝐹,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑔)

Proof of Theorem fin23lem41
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8509 . . . . 5 (ω ≼ 𝒫 𝐴 → ∃𝑏 𝑏:ω–1-1→𝒫 𝐴)
2 fin23lem40.f . . . . . . . . . 10 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
32fin23lem33 9756 . . . . . . . . 9 (𝐴𝐹 → ∃𝑐𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)))
43adantl 482 . . . . . . . 8 ((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) → ∃𝑐𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)))
5 ssv 3995 . . . . . . . . . . 11 𝒫 𝐴 ⊆ V
6 f1ss 6577 . . . . . . . . . . 11 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝒫 𝐴 ⊆ V) → 𝑏:ω–1-1→V)
75, 6mpan2 687 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴𝑏:ω–1-1→V)
87ad2antrr 722 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → 𝑏:ω–1-1→V)
9 f1f 6572 . . . . . . . . . . . 12 (𝑏:ω–1-1→𝒫 𝐴𝑏:ω⟶𝒫 𝐴)
10 frn 6517 . . . . . . . . . . . 12 (𝑏:ω⟶𝒫 𝐴 → ran 𝑏 ⊆ 𝒫 𝐴)
11 uniss 4858 . . . . . . . . . . . 12 (ran 𝑏 ⊆ 𝒫 𝐴 ran 𝑏 𝒫 𝐴)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝑏:ω–1-1→𝒫 𝐴 ran 𝑏 𝒫 𝐴)
13 unipw 5339 . . . . . . . . . . 11 𝒫 𝐴 = 𝐴
1412, 13sseqtrdi 4021 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 ran 𝑏𝐴)
1514ad2antrr 722 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ran 𝑏𝐴)
16 f1eq1 6567 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → (𝑑:ω–1-1→V ↔ 𝑒:ω–1-1→V))
17 rneq 5805 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → ran 𝑑 = ran 𝑒)
1817unieqd 4847 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 ran 𝑑 = ran 𝑒)
1918sseq1d 4002 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ( ran 𝑑𝐴 ran 𝑒𝐴))
2016, 19anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑒 → ((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) ↔ (𝑒:ω–1-1→V ∧ ran 𝑒𝐴)))
21 fveq2 6667 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (𝑐𝑑) = (𝑐𝑒))
22 f1eq1 6567 . . . . . . . . . . . . . . 15 ((𝑐𝑑) = (𝑐𝑒) → ((𝑐𝑑):ω–1-1→V ↔ (𝑐𝑒):ω–1-1→V))
2321, 22syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ((𝑐𝑑):ω–1-1→V ↔ (𝑐𝑒):ω–1-1→V))
2421rneqd 5807 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → ran (𝑐𝑑) = ran (𝑐𝑒))
2524unieqd 4847 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 ran (𝑐𝑑) = ran (𝑐𝑒))
2625, 18psseq12d 4075 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ( ran (𝑐𝑑) ⊊ ran 𝑑 ran (𝑐𝑒) ⊊ ran 𝑒))
2723, 26anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑒 → (((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑) ↔ ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
2820, 27imbi12d 346 . . . . . . . . . . . 12 (𝑑 = 𝑒 → (((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) ↔ ((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒))))
2928cbvalvw 2036 . . . . . . . . . . 11 (∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) ↔ ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
3029biimpi 217 . . . . . . . . . 10 (∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) → ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
3130adantl 482 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
32 eqid 2826 . . . . . . . . 9 (rec(𝑐, 𝑏) ↾ ω) = (rec(𝑐, 𝑏) ↾ ω)
332, 8, 15, 31, 32fin23lem39 9761 . . . . . . . 8 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ¬ 𝐴𝐹)
344, 33exlimddv 1929 . . . . . . 7 ((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) → ¬ 𝐴𝐹)
3534pm2.01da 795 . . . . . 6 (𝑏:ω–1-1→𝒫 𝐴 → ¬ 𝐴𝐹)
3635exlimiv 1924 . . . . 5 (∃𝑏 𝑏:ω–1-1→𝒫 𝐴 → ¬ 𝐴𝐹)
371, 36syl 17 . . . 4 (ω ≼ 𝒫 𝐴 → ¬ 𝐴𝐹)
3837con2i 141 . . 3 (𝐴𝐹 → ¬ ω ≼ 𝒫 𝐴)
39 pwexg 5276 . . . 4 (𝐴𝐹 → 𝒫 𝐴 ∈ V)
40 isfin4-2 9725 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
4139, 40syl 17 . . 3 (𝐴𝐹 → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
4238, 41mpbird 258 . 2 (𝐴𝐹 → 𝒫 𝐴 ∈ FinIV)
43 isfin3 9707 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
4442, 43sylibr 235 1 (𝐴𝐹𝐴 ∈ FinIII)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396  ∀wal 1528   = wceq 1530  ∃wex 1773   ∈ wcel 2107  {cab 2804  ∀wral 3143  Vcvv 3500   ⊆ wss 3940   ⊊ wpss 3941  𝒫 cpw 4542  ∪ cuni 4837  ∩ cint 4874   class class class wbr 5063  ran crn 5555   ↾ cres 5556  suc csuc 6191  ⟶wf 6348  –1-1→wf1 6349  ‘cfv 6352  (class class class)co 7148  ωcom 7568  reccrdg 8036   ↑m cmap 8396   ≼ cdom 8496  FinIVcfin4 9691  FinIIIcfin3 9692 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-seqom 8075  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-fin4 9698  df-fin3 9699 This theorem is referenced by:  isf33lem  9777
 Copyright terms: Public domain W3C validator