MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem41 Structured version   Visualization version   GIF version

Theorem fin23lem41 10373
Description: Lemma for fin23 10410. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
Assertion
Ref Expression
fin23lem41 (𝐴 ∈ 𝐹 β†’ 𝐴 ∈ FinIII)
Distinct variable groups:   𝑔,π‘Ž,π‘₯,𝐴   𝐹,π‘Ž
Allowed substitution hints:   𝐹(π‘₯,𝑔)

Proof of Theorem fin23lem41
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8975 . . . . 5 (Ο‰ β‰Ό 𝒫 𝐴 β†’ βˆƒπ‘ 𝑏:ω–1-1→𝒫 𝐴)
2 fin23lem40.f . . . . . . . . . 10 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
32fin23lem33 10366 . . . . . . . . 9 (𝐴 ∈ 𝐹 β†’ βˆƒπ‘βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
43adantl 480 . . . . . . . 8 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) β†’ βˆƒπ‘βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
5 ssv 3997 . . . . . . . . . . 11 𝒫 𝐴 βŠ† V
6 f1ss 6793 . . . . . . . . . . 11 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝒫 𝐴 βŠ† V) β†’ 𝑏:ω–1-1β†’V)
75, 6mpan2 689 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 β†’ 𝑏:ω–1-1β†’V)
87ad2antrr 724 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ 𝑏:ω–1-1β†’V)
9 f1f 6787 . . . . . . . . . . . 12 (𝑏:ω–1-1→𝒫 𝐴 β†’ 𝑏:Ο‰βŸΆπ’« 𝐴)
10 frn 6723 . . . . . . . . . . . 12 (𝑏:Ο‰βŸΆπ’« 𝐴 β†’ ran 𝑏 βŠ† 𝒫 𝐴)
11 uniss 4911 . . . . . . . . . . . 12 (ran 𝑏 βŠ† 𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† βˆͺ 𝒫 𝐴)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝑏:ω–1-1→𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† βˆͺ 𝒫 𝐴)
13 unipw 5446 . . . . . . . . . . 11 βˆͺ 𝒫 𝐴 = 𝐴
1412, 13sseqtrdi 4023 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† 𝐴)
1514ad2antrr 724 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ βˆͺ ran 𝑏 βŠ† 𝐴)
16 f1eq1 6782 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (𝑑:ω–1-1β†’V ↔ 𝑒:ω–1-1β†’V))
17 rneq 5932 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 β†’ ran 𝑑 = ran 𝑒)
1817unieqd 4916 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ βˆͺ ran 𝑑 = βˆͺ ran 𝑒)
1918sseq1d 4004 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (βˆͺ ran 𝑑 βŠ† 𝐴 ↔ βˆͺ ran 𝑒 βŠ† 𝐴))
2016, 19anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑒 β†’ ((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) ↔ (𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴)))
21 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ (π‘β€˜π‘‘) = (π‘β€˜π‘’))
22 f1eq1 6782 . . . . . . . . . . . . . . 15 ((π‘β€˜π‘‘) = (π‘β€˜π‘’) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ↔ (π‘β€˜π‘’):ω–1-1β†’V))
2321, 22syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ↔ (π‘β€˜π‘’):ω–1-1β†’V))
2421rneqd 5934 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 β†’ ran (π‘β€˜π‘‘) = ran (π‘β€˜π‘’))
2524unieqd 4916 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ βˆͺ ran (π‘β€˜π‘‘) = βˆͺ ran (π‘β€˜π‘’))
2625, 18psseq12d 4086 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑 ↔ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒))
2723, 26anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑒 β†’ (((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑) ↔ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
2820, 27imbi12d 343 . . . . . . . . . . . 12 (𝑑 = 𝑒 β†’ (((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) ↔ ((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒))))
2928cbvalvw 2031 . . . . . . . . . . 11 (βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) ↔ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
3029biimpi 215 . . . . . . . . . 10 (βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) β†’ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
3130adantl 480 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
32 eqid 2725 . . . . . . . . 9 (rec(𝑐, 𝑏) β†Ύ Ο‰) = (rec(𝑐, 𝑏) β†Ύ Ο‰)
332, 8, 15, 31, 32fin23lem39 10371 . . . . . . . 8 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ Β¬ 𝐴 ∈ 𝐹)
344, 33exlimddv 1930 . . . . . . 7 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) β†’ Β¬ 𝐴 ∈ 𝐹)
3534pm2.01da 797 . . . . . 6 (𝑏:ω–1-1→𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
3635exlimiv 1925 . . . . 5 (βˆƒπ‘ 𝑏:ω–1-1→𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
371, 36syl 17 . . . 4 (Ο‰ β‰Ό 𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
3837con2i 139 . . 3 (𝐴 ∈ 𝐹 β†’ Β¬ Ο‰ β‰Ό 𝒫 𝐴)
39 pwexg 5372 . . . 4 (𝐴 ∈ 𝐹 β†’ 𝒫 𝐴 ∈ V)
40 isfin4-2 10335 . . . 4 (𝒫 𝐴 ∈ V β†’ (𝒫 𝐴 ∈ FinIV ↔ Β¬ Ο‰ β‰Ό 𝒫 𝐴))
4139, 40syl 17 . . 3 (𝐴 ∈ 𝐹 β†’ (𝒫 𝐴 ∈ FinIV ↔ Β¬ Ο‰ β‰Ό 𝒫 𝐴))
4238, 41mpbird 256 . 2 (𝐴 ∈ 𝐹 β†’ 𝒫 𝐴 ∈ FinIV)
43 isfin3 10317 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
4442, 43sylibr 233 1 (𝐴 ∈ 𝐹 β†’ 𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394  βˆ€wal 1531   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2702  βˆ€wral 3051  Vcvv 3463   βŠ† wss 3940   ⊊ wpss 3941  π’« cpw 4598  βˆͺ cuni 4903  βˆ© cint 4944   class class class wbr 5143  ran crn 5673   β†Ύ cres 5674  suc csuc 6366  βŸΆwf 6538  β€“1-1β†’wf1 6539  β€˜cfv 6542  (class class class)co 7415  Ο‰com 7867  reccrdg 8426   ↑m cmap 8841   β‰Ό cdom 8958  FinIVcfin4 10301  FinIIIcfin3 10302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-seqom 8465  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-card 9960  df-fin4 10308  df-fin3 10309
This theorem is referenced by:  isf33lem  10387
  Copyright terms: Public domain W3C validator