MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem41 Structured version   Visualization version   GIF version

Theorem fin23lem41 10349
Description: Lemma for fin23 10386. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
Assertion
Ref Expression
fin23lem41 (𝐴 ∈ 𝐹 β†’ 𝐴 ∈ FinIII)
Distinct variable groups:   𝑔,π‘Ž,π‘₯,𝐴   𝐹,π‘Ž
Allowed substitution hints:   𝐹(π‘₯,𝑔)

Proof of Theorem fin23lem41
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8956 . . . . 5 (Ο‰ β‰Ό 𝒫 𝐴 β†’ βˆƒπ‘ 𝑏:ω–1-1→𝒫 𝐴)
2 fin23lem40.f . . . . . . . . . 10 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
32fin23lem33 10342 . . . . . . . . 9 (𝐴 ∈ 𝐹 β†’ βˆƒπ‘βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
43adantl 481 . . . . . . . 8 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) β†’ βˆƒπ‘βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
5 ssv 4001 . . . . . . . . . . 11 𝒫 𝐴 βŠ† V
6 f1ss 6787 . . . . . . . . . . 11 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝒫 𝐴 βŠ† V) β†’ 𝑏:ω–1-1β†’V)
75, 6mpan2 688 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 β†’ 𝑏:ω–1-1β†’V)
87ad2antrr 723 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ 𝑏:ω–1-1β†’V)
9 f1f 6781 . . . . . . . . . . . 12 (𝑏:ω–1-1→𝒫 𝐴 β†’ 𝑏:Ο‰βŸΆπ’« 𝐴)
10 frn 6718 . . . . . . . . . . . 12 (𝑏:Ο‰βŸΆπ’« 𝐴 β†’ ran 𝑏 βŠ† 𝒫 𝐴)
11 uniss 4910 . . . . . . . . . . . 12 (ran 𝑏 βŠ† 𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† βˆͺ 𝒫 𝐴)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝑏:ω–1-1→𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† βˆͺ 𝒫 𝐴)
13 unipw 5443 . . . . . . . . . . 11 βˆͺ 𝒫 𝐴 = 𝐴
1412, 13sseqtrdi 4027 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 β†’ βˆͺ ran 𝑏 βŠ† 𝐴)
1514ad2antrr 723 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ βˆͺ ran 𝑏 βŠ† 𝐴)
16 f1eq1 6776 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (𝑑:ω–1-1β†’V ↔ 𝑒:ω–1-1β†’V))
17 rneq 5929 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 β†’ ran 𝑑 = ran 𝑒)
1817unieqd 4915 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ βˆͺ ran 𝑑 = βˆͺ ran 𝑒)
1918sseq1d 4008 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (βˆͺ ran 𝑑 βŠ† 𝐴 ↔ βˆͺ ran 𝑒 βŠ† 𝐴))
2016, 19anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑒 β†’ ((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) ↔ (𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴)))
21 fveq2 6885 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ (π‘β€˜π‘‘) = (π‘β€˜π‘’))
22 f1eq1 6776 . . . . . . . . . . . . . . 15 ((π‘β€˜π‘‘) = (π‘β€˜π‘’) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ↔ (π‘β€˜π‘’):ω–1-1β†’V))
2321, 22syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ↔ (π‘β€˜π‘’):ω–1-1β†’V))
2421rneqd 5931 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 β†’ ran (π‘β€˜π‘‘) = ran (π‘β€˜π‘’))
2524unieqd 4915 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 β†’ βˆͺ ran (π‘β€˜π‘‘) = βˆͺ ran (π‘β€˜π‘’))
2625, 18psseq12d 4089 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 β†’ (βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑 ↔ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒))
2723, 26anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = 𝑒 β†’ (((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑) ↔ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
2820, 27imbi12d 344 . . . . . . . . . . . 12 (𝑑 = 𝑒 β†’ (((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) ↔ ((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒))))
2928cbvalvw 2031 . . . . . . . . . . 11 (βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) ↔ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
3029biimpi 215 . . . . . . . . . 10 (βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) β†’ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
3130adantl 481 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ βˆ€π‘’((𝑒:ω–1-1β†’V ∧ βˆͺ ran 𝑒 βŠ† 𝐴) β†’ ((π‘β€˜π‘’):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘’) ⊊ βˆͺ ran 𝑒)))
32 eqid 2726 . . . . . . . . 9 (rec(𝑐, 𝑏) β†Ύ Ο‰) = (rec(𝑐, 𝑏) β†Ύ Ο‰)
332, 8, 15, 31, 32fin23lem39 10347 . . . . . . . 8 (((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) ∧ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐴) β†’ ((π‘β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘β€˜π‘‘) ⊊ βˆͺ ran 𝑑))) β†’ Β¬ 𝐴 ∈ 𝐹)
344, 33exlimddv 1930 . . . . . . 7 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝐴 ∈ 𝐹) β†’ Β¬ 𝐴 ∈ 𝐹)
3534pm2.01da 796 . . . . . 6 (𝑏:ω–1-1→𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
3635exlimiv 1925 . . . . 5 (βˆƒπ‘ 𝑏:ω–1-1→𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
371, 36syl 17 . . . 4 (Ο‰ β‰Ό 𝒫 𝐴 β†’ Β¬ 𝐴 ∈ 𝐹)
3837con2i 139 . . 3 (𝐴 ∈ 𝐹 β†’ Β¬ Ο‰ β‰Ό 𝒫 𝐴)
39 pwexg 5369 . . . 4 (𝐴 ∈ 𝐹 β†’ 𝒫 𝐴 ∈ V)
40 isfin4-2 10311 . . . 4 (𝒫 𝐴 ∈ V β†’ (𝒫 𝐴 ∈ FinIV ↔ Β¬ Ο‰ β‰Ό 𝒫 𝐴))
4139, 40syl 17 . . 3 (𝐴 ∈ 𝐹 β†’ (𝒫 𝐴 ∈ FinIV ↔ Β¬ Ο‰ β‰Ό 𝒫 𝐴))
4238, 41mpbird 257 . 2 (𝐴 ∈ 𝐹 β†’ 𝒫 𝐴 ∈ FinIV)
43 isfin3 10293 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
4442, 43sylibr 233 1 (𝐴 ∈ 𝐹 β†’ 𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395  βˆ€wal 1531   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2703  βˆ€wral 3055  Vcvv 3468   βŠ† wss 3943   ⊊ wpss 3944  π’« cpw 4597  βˆͺ cuni 4902  βˆ© cint 4943   class class class wbr 5141  ran crn 5670   β†Ύ cres 5671  suc csuc 6360  βŸΆwf 6533  β€“1-1β†’wf1 6534  β€˜cfv 6537  (class class class)co 7405  Ο‰com 7852  reccrdg 8410   ↑m cmap 8822   β‰Ό cdom 8939  FinIVcfin4 10277  FinIIIcfin3 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-seqom 8449  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-fin4 10284  df-fin3 10285
This theorem is referenced by:  isf33lem  10363
  Copyright terms: Public domain W3C validator