Proof of Theorem isf32lem6
Step | Hyp | Ref
| Expression |
1 | | isf32lem.f |
. . . 4
⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
2 | 1 | fveq1i 6757 |
. . 3
⊢ (𝐾‘𝐴) = (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) |
3 | | isf32lem.d |
. . . . . . . 8
⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
4 | 3 | ssrab3 4011 |
. . . . . . 7
⊢ 𝑆 ⊆
ω |
5 | | isf32lem.a |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
6 | | isf32lem.b |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
7 | | isf32lem.c |
. . . . . . . 8
⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
8 | 5, 6, 7, 3 | isf32lem5 10044 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
9 | | isf32lem.e |
. . . . . . . 8
⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
10 | 9 | fin23lem22 10014 |
. . . . . . 7
⊢ ((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) → 𝐽:ω–1-1-onto→𝑆) |
11 | 4, 8, 10 | sylancr 586 |
. . . . . 6
⊢ (𝜑 → 𝐽:ω–1-1-onto→𝑆) |
12 | | f1of 6700 |
. . . . . 6
⊢ (𝐽:ω–1-1-onto→𝑆 → 𝐽:ω⟶𝑆) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽:ω⟶𝑆) |
14 | | fvco3 6849 |
. . . . 5
⊢ ((𝐽:ω⟶𝑆 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) |
15 | 13, 14 | sylan 579 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) |
16 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ¬ 𝑆 ∈ Fin) |
17 | 4, 16, 10 | sylancr 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐽:ω–1-1-onto→𝑆) |
18 | 17, 12 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐽:ω⟶𝑆) |
19 | | ffvelrn 6941 |
. . . . . 6
⊢ ((𝐽:ω⟶𝑆 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ 𝑆) |
20 | 18, 19 | sylancom 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ 𝑆) |
21 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘𝑤) = (𝐹‘(𝐽‘𝐴))) |
22 | | suceq 6316 |
. . . . . . . 8
⊢ (𝑤 = (𝐽‘𝐴) → suc 𝑤 = suc (𝐽‘𝐴)) |
23 | 22 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽‘𝐴))) |
24 | 21, 23 | difeq12d 4054 |
. . . . . 6
⊢ (𝑤 = (𝐽‘𝐴) → ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
25 | | eqid 2738 |
. . . . . 6
⊢ (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) |
26 | | fvex 6769 |
. . . . . . 7
⊢ (𝐹‘(𝐽‘𝐴)) ∈ V |
27 | 26 | difexi 5247 |
. . . . . 6
⊢ ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ∈ V |
28 | 24, 25, 27 | fvmpt 6857 |
. . . . 5
⊢ ((𝐽‘𝐴) ∈ 𝑆 → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
29 | 20, 28 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
30 | 15, 29 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
31 | 2, 30 | eqtrid 2790 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
32 | | suceq 6316 |
. . . . . . . . 9
⊢ (𝑦 = (𝐽‘𝐴) → suc 𝑦 = suc (𝐽‘𝐴)) |
33 | 32 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = (𝐽‘𝐴) → (𝐹‘suc 𝑦) = (𝐹‘suc (𝐽‘𝐴))) |
34 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑦 = (𝐽‘𝐴) → (𝐹‘𝑦) = (𝐹‘(𝐽‘𝐴))) |
35 | 33, 34 | psseq12d 4025 |
. . . . . . 7
⊢ (𝑦 = (𝐽‘𝐴) → ((𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦) ↔ (𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴)))) |
36 | 35, 3 | elrab2 3620 |
. . . . . 6
⊢ ((𝐽‘𝐴) ∈ 𝑆 ↔ ((𝐽‘𝐴) ∈ ω ∧ (𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴)))) |
37 | 36 | simprbi 496 |
. . . . 5
⊢ ((𝐽‘𝐴) ∈ 𝑆 → (𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴))) |
38 | 20, 37 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴))) |
39 | | df-pss 3902 |
. . . 4
⊢ ((𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴)) ↔ ((𝐹‘suc (𝐽‘𝐴)) ⊆ (𝐹‘(𝐽‘𝐴)) ∧ (𝐹‘suc (𝐽‘𝐴)) ≠ (𝐹‘(𝐽‘𝐴)))) |
40 | 38, 39 | sylib 217 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐹‘suc (𝐽‘𝐴)) ⊆ (𝐹‘(𝐽‘𝐴)) ∧ (𝐹‘suc (𝐽‘𝐴)) ≠ (𝐹‘(𝐽‘𝐴)))) |
41 | | pssdifn0 4296 |
. . 3
⊢ (((𝐹‘suc (𝐽‘𝐴)) ⊆ (𝐹‘(𝐽‘𝐴)) ∧ (𝐹‘suc (𝐽‘𝐴)) ≠ (𝐹‘(𝐽‘𝐴))) → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ≠ ∅) |
42 | 40, 41 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ≠ ∅) |
43 | 31, 42 | eqnetrd 3010 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ≠ ∅) |