MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem6 Structured version   Visualization version   GIF version

Theorem isf32lem6 9433
Description: Lemma for isfin3-2 9442. Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem6 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ≠ ∅)
Distinct variable groups:   𝑥,𝑤   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem6
StepHypRef Expression
1 isf32lem.f . . . 4 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6376 . . 3 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
4 ssrab2 3847 . . . . . . . 8 {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ⊆ ω
53, 4eqsstri 3795 . . . . . . 7 𝑆 ⊆ ω
6 isf32lem.a . . . . . . . 8 (𝜑𝐹:ω⟶𝒫 𝐺)
7 isf32lem.b . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
8 isf32lem.c . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
96, 7, 8, 3isf32lem5 9432 . . . . . . 7 (𝜑 → ¬ 𝑆 ∈ Fin)
10 isf32lem.e . . . . . . . 8 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
1110fin23lem22 9402 . . . . . . 7 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
125, 9, 11sylancr 581 . . . . . 6 (𝜑𝐽:ω–1-1-onto𝑆)
13 f1of 6320 . . . . . 6 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1412, 13syl 17 . . . . 5 (𝜑𝐽:ω⟶𝑆)
15 fvco3 6464 . . . . 5 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1614, 15sylan 575 . . . 4 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
179adantr 472 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → ¬ 𝑆 ∈ Fin)
185, 17, 11sylancr 581 . . . . . . 7 ((𝜑𝐴 ∈ ω) → 𝐽:ω–1-1-onto𝑆)
1918, 13syl 17 . . . . . 6 ((𝜑𝐴 ∈ ω) → 𝐽:ω⟶𝑆)
20 ffvelrn 6547 . . . . . 6 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
2119, 20sylancom 582 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
22 fveq2 6375 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
23 suceq 5973 . . . . . . . 8 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
2423fveq2d 6379 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2522, 24difeq12d 3891 . . . . . 6 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
26 eqid 2765 . . . . . 6 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
27 fvex 6388 . . . . . . 7 (𝐹‘(𝐽𝐴)) ∈ V
28 difexg 4969 . . . . . . 7 ((𝐹‘(𝐽𝐴)) ∈ V → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V)
2927, 28ax-mp 5 . . . . . 6 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
3025, 26, 29fvmpt 6471 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3121, 30syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3216, 31eqtrd 2799 . . 3 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
332, 32syl5eq 2811 . 2 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
34 suceq 5973 . . . . . . . . 9 (𝑦 = (𝐽𝐴) → suc 𝑦 = suc (𝐽𝐴))
3534fveq2d 6379 . . . . . . . 8 (𝑦 = (𝐽𝐴) → (𝐹‘suc 𝑦) = (𝐹‘suc (𝐽𝐴)))
36 fveq2 6375 . . . . . . . 8 (𝑦 = (𝐽𝐴) → (𝐹𝑦) = (𝐹‘(𝐽𝐴)))
3735, 36psseq12d 3862 . . . . . . 7 (𝑦 = (𝐽𝐴) → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴))))
3837, 3elrab2 3523 . . . . . 6 ((𝐽𝐴) ∈ 𝑆 ↔ ((𝐽𝐴) ∈ ω ∧ (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴))))
3938simprbi 490 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)))
4021, 39syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)))
41 df-pss 3748 . . . 4 ((𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)) ↔ ((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))))
4240, 41sylib 209 . . 3 ((𝜑𝐴 ∈ ω) → ((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))))
43 pssdifn0 4108 . . 3 (((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ≠ ∅)
4442, 43syl 17 . 2 ((𝜑𝐴 ∈ ω) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ≠ ∅)
4533, 44eqnetrd 3004 1 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  {crab 3059  Vcvv 3350  cdif 3729  cin 3731  wss 3732  wpss 3733  c0 4079  𝒫 cpw 4315   cint 4633   class class class wbr 4809  cmpt 4888  ran crn 5278  ccom 5281  suc csuc 5910  wf 6064  1-1-ontowf1o 6067  cfv 6068  crio 6802  ωcom 7263  cen 8157  Fincfn 8160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-om 7264  df-wrecs 7610  df-recs 7672  df-1o 7764  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016
This theorem is referenced by:  isf32lem9  9436
  Copyright terms: Public domain W3C validator