MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem6 Structured version   Visualization version   GIF version

Theorem isf32lem6 10389
Description: Lemma for isfin3-2 10398. Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem6 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ≠ ∅)
Distinct variable groups:   𝑥,𝑤   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem6
StepHypRef Expression
1 isf32lem.f . . . 4 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6902 . . 3 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
43ssrab3 4092 . . . . . . 7 𝑆 ⊆ ω
5 isf32lem.a . . . . . . . 8 (𝜑𝐹:ω⟶𝒫 𝐺)
6 isf32lem.b . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
7 isf32lem.c . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
85, 6, 7, 3isf32lem5 10388 . . . . . . 7 (𝜑 → ¬ 𝑆 ∈ Fin)
9 isf32lem.e . . . . . . . 8 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
109fin23lem22 10358 . . . . . . 7 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
114, 8, 10sylancr 586 . . . . . 6 (𝜑𝐽:ω–1-1-onto𝑆)
12 f1of 6843 . . . . . 6 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1311, 12syl 17 . . . . 5 (𝜑𝐽:ω⟶𝑆)
14 fvco3 7002 . . . . 5 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1513, 14sylan 579 . . . 4 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
168adantr 480 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → ¬ 𝑆 ∈ Fin)
174, 16, 10sylancr 586 . . . . . . 7 ((𝜑𝐴 ∈ ω) → 𝐽:ω–1-1-onto𝑆)
1817, 12syl 17 . . . . . 6 ((𝜑𝐴 ∈ ω) → 𝐽:ω⟶𝑆)
19 ffvelcdm 7095 . . . . . 6 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
2018, 19sylancom 587 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
21 fveq2 6901 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
22 suceq 6446 . . . . . . . 8 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
2322fveq2d 6905 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2421, 23difeq12d 4137 . . . . . 6 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
25 eqid 2733 . . . . . 6 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
26 fvex 6914 . . . . . . 7 (𝐹‘(𝐽𝐴)) ∈ V
2726difexi 5331 . . . . . 6 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
2824, 25, 27fvmpt 7010 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2920, 28syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3015, 29eqtrd 2773 . . 3 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
312, 30eqtrid 2785 . 2 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
32 suceq 6446 . . . . . . . . 9 (𝑦 = (𝐽𝐴) → suc 𝑦 = suc (𝐽𝐴))
3332fveq2d 6905 . . . . . . . 8 (𝑦 = (𝐽𝐴) → (𝐹‘suc 𝑦) = (𝐹‘suc (𝐽𝐴)))
34 fveq2 6901 . . . . . . . 8 (𝑦 = (𝐽𝐴) → (𝐹𝑦) = (𝐹‘(𝐽𝐴)))
3533, 34psseq12d 4107 . . . . . . 7 (𝑦 = (𝐽𝐴) → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴))))
3635, 3elrab2 3698 . . . . . 6 ((𝐽𝐴) ∈ 𝑆 ↔ ((𝐽𝐴) ∈ ω ∧ (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴))))
3736simprbi 496 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)))
3820, 37syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)))
39 df-pss 3983 . . . 4 ((𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)) ↔ ((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))))
4038, 39sylib 218 . . 3 ((𝜑𝐴 ∈ ω) → ((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))))
41 pssdifn0 4374 . . 3 (((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ≠ ∅)
4240, 41syl 17 . 2 ((𝜑𝐴 ∈ ω) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ≠ ∅)
4331, 42eqnetrd 3004 1 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1535  wcel 2104  wne 2936  wral 3057  {crab 3432  cdif 3960  cin 3962  wss 3963  wpss 3964  c0 4339  𝒫 cpw 4604   cint 4953   class class class wbr 5149  cmpt 5232  ran crn 5684  ccom 5687  suc csuc 6382  wf 6554  1-1-ontowf1o 6557  cfv 6558  crio 7380  ωcom 7880  cen 8975  Fincfn 8978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-int 4954  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6317  df-ord 6383  df-on 6384  df-lim 6385  df-suc 6386  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-isom 6567  df-riota 7381  df-ov 7428  df-om 7881  df-2nd 8008  df-frecs 8299  df-wrecs 8330  df-recs 8404  df-1o 8499  df-er 8738  df-en 8979  df-dom 8980  df-sdom 8981  df-fin 8982  df-card 9970
This theorem is referenced by:  isf32lem9  10392
  Copyright terms: Public domain W3C validator