Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem6 Structured version   Visualization version   GIF version

Theorem isf32lem6 9808
 Description: Lemma for isfin3-2 9817. Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem6 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ≠ ∅)
Distinct variable groups:   𝑥,𝑤   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem6
StepHypRef Expression
1 isf32lem.f . . . 4 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6657 . . 3 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
43ssrab3 3987 . . . . . . 7 𝑆 ⊆ ω
5 isf32lem.a . . . . . . . 8 (𝜑𝐹:ω⟶𝒫 𝐺)
6 isf32lem.b . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
7 isf32lem.c . . . . . . . 8 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
85, 6, 7, 3isf32lem5 9807 . . . . . . 7 (𝜑 → ¬ 𝑆 ∈ Fin)
9 isf32lem.e . . . . . . . 8 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
109fin23lem22 9777 . . . . . . 7 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
114, 8, 10sylancr 591 . . . . . 6 (𝜑𝐽:ω–1-1-onto𝑆)
12 f1of 6600 . . . . . 6 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1311, 12syl 17 . . . . 5 (𝜑𝐽:ω⟶𝑆)
14 fvco3 6749 . . . . 5 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1513, 14sylan 584 . . . 4 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
168adantr 485 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → ¬ 𝑆 ∈ Fin)
174, 16, 10sylancr 591 . . . . . . 7 ((𝜑𝐴 ∈ ω) → 𝐽:ω–1-1-onto𝑆)
1817, 12syl 17 . . . . . 6 ((𝜑𝐴 ∈ ω) → 𝐽:ω⟶𝑆)
19 ffvelrn 6838 . . . . . 6 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
2018, 19sylancom 592 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
21 fveq2 6656 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
22 suceq 6232 . . . . . . . 8 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
2322fveq2d 6660 . . . . . . 7 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2421, 23difeq12d 4030 . . . . . 6 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
25 eqid 2759 . . . . . 6 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
26 fvex 6669 . . . . . . 7 (𝐹‘(𝐽𝐴)) ∈ V
2726difexi 5196 . . . . . 6 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
2824, 25, 27fvmpt 6757 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2920, 28syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3015, 29eqtrd 2794 . . 3 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
312, 30syl5eq 2806 . 2 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
32 suceq 6232 . . . . . . . . 9 (𝑦 = (𝐽𝐴) → suc 𝑦 = suc (𝐽𝐴))
3332fveq2d 6660 . . . . . . . 8 (𝑦 = (𝐽𝐴) → (𝐹‘suc 𝑦) = (𝐹‘suc (𝐽𝐴)))
34 fveq2 6656 . . . . . . . 8 (𝑦 = (𝐽𝐴) → (𝐹𝑦) = (𝐹‘(𝐽𝐴)))
3533, 34psseq12d 4001 . . . . . . 7 (𝑦 = (𝐽𝐴) → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴))))
3635, 3elrab2 3606 . . . . . 6 ((𝐽𝐴) ∈ 𝑆 ↔ ((𝐽𝐴) ∈ ω ∧ (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴))))
3736simprbi 501 . . . . 5 ((𝐽𝐴) ∈ 𝑆 → (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)))
3820, 37syl 17 . . . 4 ((𝜑𝐴 ∈ ω) → (𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)))
39 df-pss 3878 . . . 4 ((𝐹‘suc (𝐽𝐴)) ⊊ (𝐹‘(𝐽𝐴)) ↔ ((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))))
4038, 39sylib 221 . . 3 ((𝜑𝐴 ∈ ω) → ((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))))
41 pssdifn0 4263 . . 3 (((𝐹‘suc (𝐽𝐴)) ⊆ (𝐹‘(𝐽𝐴)) ∧ (𝐹‘suc (𝐽𝐴)) ≠ (𝐹‘(𝐽𝐴))) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ≠ ∅)
4240, 41syl 17 . 2 ((𝜑𝐴 ∈ ω) → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ≠ ∅)
4331, 42eqnetrd 3019 1 ((𝜑𝐴 ∈ ω) → (𝐾𝐴) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  {crab 3075   ∖ cdif 3856   ∩ cin 3858   ⊆ wss 3859   ⊊ wpss 3860  ∅c0 4226  𝒫 cpw 4492  ∩ cint 4836   class class class wbr 5030   ↦ cmpt 5110  ran crn 5523   ∘ ccom 5526  suc csuc 6169  ⟶wf 6329  –1-1-onto→wf1o 6332  ‘cfv 6333  ℩crio 7105  ωcom 7577   ≈ cen 8522  Fincfn 8525 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-om 7578  df-wrecs 7955  df-recs 8016  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-card 9391 This theorem is referenced by:  isf32lem9  9811
 Copyright terms: Public domain W3C validator