Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psseq2d | Structured version Visualization version GIF version |
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
psseq2d | ⊢ (𝜑 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | psseq2 3997 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 ⊊ wpss 3862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-v 3412 df-in 3868 df-ss 3878 df-pss 3880 |
This theorem is referenced by: psseq12d 4003 php3 8739 inf3lem5 9142 infeq5i 9146 ackbij1lem15 9708 fin4en1 9783 chpsscon1 29401 chnle 29411 atcvatlem 30282 atcvati 30283 lsatcvat 36662 |
Copyright terms: Public domain | W3C validator |