| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq2d | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| psseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| psseq2d | ⊢ (𝜑 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | psseq2 4071 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊊ wpss 3932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ne 2934 df-ss 3948 df-pss 3951 |
| This theorem is referenced by: psseq12d 4077 php3 9228 php3OLD 9238 inf3lem5 9651 infeq5i 9655 ackbij1lem15 10252 fin4en1 10328 chpsscon1 31490 chnle 31500 atcvatlem 32371 atcvati 32372 lsatcvat 39073 |
| Copyright terms: Public domain | W3C validator |