MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2d Structured version   Visualization version   GIF version

Theorem psseq2d 4089
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypothesis
Ref Expression
psseq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
psseq2d (𝜑 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2d
StepHypRef Expression
1 psseq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 psseq2 4084 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2syl 17 1 (𝜑 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wpss 3945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-cleq 2717  df-ne 2930  df-ss 3961  df-pss 3964
This theorem is referenced by:  psseq12d  4090  php3  9237  php3OLD  9249  inf3lem5  9657  infeq5i  9661  ackbij1lem15  10259  fin4en1  10334  chpsscon1  31386  chnle  31396  atcvatlem  32267  atcvati  32268  lsatcvat  38652
  Copyright terms: Public domain W3C validator