MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq2d Structured version   Visualization version   GIF version

Theorem psseq2d 4078
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypothesis
Ref Expression
psseq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
psseq2d (𝜑 → (𝐶𝐴𝐶𝐵))

Proof of Theorem psseq2d
StepHypRef Expression
1 psseq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 psseq2 4073 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2syl 17 1 (𝜑 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wpss 3934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2726  df-ne 2932  df-ss 3950  df-pss 3953
This theorem is referenced by:  psseq12d  4079  php3  9232  php3OLD  9244  inf3lem5  9655  infeq5i  9659  ackbij1lem15  10256  fin4en1  10332  chpsscon1  31470  chnle  31480  atcvatlem  32351  atcvati  32352  lsatcvat  38992
  Copyright terms: Public domain W3C validator