| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-2 10326. Remove hypotheses from isf32lem10 10321. (Contributed by Stefan O'Rear, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf32lem11 | ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → 𝐹:ω⟶𝒫 𝐺) | |
| 2 | suceq 6401 | . . . . . . . 8 ⊢ (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐) | |
| 3 | 2 | fveq2d 6864 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘suc 𝑏) = (𝐹‘suc 𝑐)) |
| 4 | fveq2 6860 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘𝑏) = (𝐹‘𝑐)) | |
| 5 | 3, 4 | sseq12d 3982 | . . . . . 6 ⊢ (𝑏 = 𝑐 → ((𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐))) |
| 6 | 5 | cbvralvw 3216 | . . . . 5 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
| 7 | 6 | biimpi 216 | . . . 4 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
| 8 | 7 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
| 9 | simp3 1138 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
| 10 | suceq 6401 | . . . . . 6 ⊢ (𝑒 = 𝑑 → suc 𝑒 = suc 𝑑) | |
| 11 | 10 | fveq2d 6864 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘suc 𝑒) = (𝐹‘suc 𝑑)) |
| 12 | fveq2 6860 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘𝑒) = (𝐹‘𝑑)) | |
| 13 | 11, 12 | psseq12d 4062 | . . . 4 ⊢ (𝑒 = 𝑑 → ((𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒) ↔ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑))) |
| 14 | 13 | cbvrabv 3419 | . . 3 ⊢ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} = {𝑑 ∈ ω ∣ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑)} |
| 15 | eqid 2730 | . . 3 ⊢ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) = (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) | |
| 16 | eqid 2730 | . . 3 ⊢ ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) = ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) | |
| 17 | eqid 2730 | . . 3 ⊢ (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) = (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) | |
| 18 | 1, 8, 9, 14, 15, 16, 17 | isf32lem10 10321 | . 2 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| 19 | 18 | impcom 407 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 ⊊ wpss 3917 𝒫 cpw 4565 ∩ cint 4912 class class class wbr 5109 ↦ cmpt 5190 ran crn 5641 ∘ ccom 5644 suc csuc 6336 ℩cio 6464 ⟶wf 6509 ‘cfv 6513 ℩crio 7345 ωcom 7844 ≈ cen 8917 ≼* cwdom 9523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-wdom 9524 df-card 9898 |
| This theorem is referenced by: isf32lem12 10323 fin33i 10328 |
| Copyright terms: Public domain | W3C validator |