MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem11 Structured version   Visualization version   GIF version

Theorem isf32lem11 10361
Description: Lemma for isfin3-2 10365. Remove hypotheses from isf32lem10 10360. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf32lem11 ((𝐺 ∈ 𝑉 ∧ (𝐹:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) ∧ Β¬ ∩ ran 𝐹 ∈ ran 𝐹)) β†’ Ο‰ β‰Ό* 𝐺)
Distinct variable groups:   𝐹,𝑏   𝐺,𝑏
Allowed substitution hint:   𝑉(𝑏)

Proof of Theorem isf32lem11
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑔 β„Ž π‘˜ 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐹:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) ∧ Β¬ ∩ ran 𝐹 ∈ ran 𝐹) β†’ 𝐹:Ο‰βŸΆπ’« 𝐺)
2 suceq 6431 . . . . . . . 8 (𝑏 = 𝑐 β†’ suc 𝑏 = suc 𝑐)
32fveq2d 6896 . . . . . . 7 (𝑏 = 𝑐 β†’ (πΉβ€˜suc 𝑏) = (πΉβ€˜suc 𝑐))
4 fveq2 6892 . . . . . . 7 (𝑏 = 𝑐 β†’ (πΉβ€˜π‘) = (πΉβ€˜π‘))
53, 4sseq12d 4016 . . . . . 6 (𝑏 = 𝑐 β†’ ((πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) ↔ (πΉβ€˜suc 𝑐) βŠ† (πΉβ€˜π‘)))
65cbvralvw 3233 . . . . 5 (βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) ↔ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑐) βŠ† (πΉβ€˜π‘))
76biimpi 215 . . . 4 (βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) β†’ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑐) βŠ† (πΉβ€˜π‘))
873ad2ant2 1133 . . 3 ((𝐹:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) ∧ Β¬ ∩ ran 𝐹 ∈ ran 𝐹) β†’ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑐) βŠ† (πΉβ€˜π‘))
9 simp3 1137 . . 3 ((𝐹:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) ∧ Β¬ ∩ ran 𝐹 ∈ ran 𝐹) β†’ Β¬ ∩ ran 𝐹 ∈ ran 𝐹)
10 suceq 6431 . . . . . 6 (𝑒 = 𝑑 β†’ suc 𝑒 = suc 𝑑)
1110fveq2d 6896 . . . . 5 (𝑒 = 𝑑 β†’ (πΉβ€˜suc 𝑒) = (πΉβ€˜suc 𝑑))
12 fveq2 6892 . . . . 5 (𝑒 = 𝑑 β†’ (πΉβ€˜π‘’) = (πΉβ€˜π‘‘))
1311, 12psseq12d 4095 . . . 4 (𝑒 = 𝑑 β†’ ((πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’) ↔ (πΉβ€˜suc 𝑑) ⊊ (πΉβ€˜π‘‘)))
1413cbvrabv 3441 . . 3 {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} = {𝑑 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑑) ⊊ (πΉβ€˜π‘‘)}
15 eqid 2731 . . 3 (𝑓 ∈ Ο‰ ↦ (℩𝑔 ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} (𝑔 ∩ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)}) β‰ˆ 𝑓)) = (𝑓 ∈ Ο‰ ↦ (℩𝑔 ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} (𝑔 ∩ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)}) β‰ˆ 𝑓))
16 eqid 2731 . . 3 ((β„Ž ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} ↦ ((πΉβ€˜β„Ž) βˆ– (πΉβ€˜suc β„Ž))) ∘ (𝑓 ∈ Ο‰ ↦ (℩𝑔 ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} (𝑔 ∩ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)}) β‰ˆ 𝑓))) = ((β„Ž ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} ↦ ((πΉβ€˜β„Ž) βˆ– (πΉβ€˜suc β„Ž))) ∘ (𝑓 ∈ Ο‰ ↦ (℩𝑔 ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} (𝑔 ∩ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)}) β‰ˆ 𝑓)))
17 eqid 2731 . . 3 (π‘˜ ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ Ο‰ ∧ π‘˜ ∈ (((β„Ž ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} ↦ ((πΉβ€˜β„Ž) βˆ– (πΉβ€˜suc β„Ž))) ∘ (𝑓 ∈ Ο‰ ↦ (℩𝑔 ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} (𝑔 ∩ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)}) β‰ˆ 𝑓)))β€˜π‘™)))) = (π‘˜ ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ Ο‰ ∧ π‘˜ ∈ (((β„Ž ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} ↦ ((πΉβ€˜β„Ž) βˆ– (πΉβ€˜suc β„Ž))) ∘ (𝑓 ∈ Ο‰ ↦ (℩𝑔 ∈ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)} (𝑔 ∩ {𝑒 ∈ Ο‰ ∣ (πΉβ€˜suc 𝑒) ⊊ (πΉβ€˜π‘’)}) β‰ˆ 𝑓)))β€˜π‘™))))
181, 8, 9, 14, 15, 16, 17isf32lem10 10360 . 2 ((𝐹:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) ∧ Β¬ ∩ ran 𝐹 ∈ ran 𝐹) β†’ (𝐺 ∈ 𝑉 β†’ Ο‰ β‰Ό* 𝐺))
1918impcom 407 1 ((𝐺 ∈ 𝑉 ∧ (𝐹:Ο‰βŸΆπ’« 𝐺 ∧ βˆ€π‘ ∈ Ο‰ (πΉβ€˜suc 𝑏) βŠ† (πΉβ€˜π‘) ∧ Β¬ ∩ ran 𝐹 ∈ ran 𝐹)) β†’ Ο‰ β‰Ό* 𝐺)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   ∈ wcel 2105  βˆ€wral 3060  {crab 3431   βˆ– cdif 3946   ∩ cin 3948   βŠ† wss 3949   ⊊ wpss 3950  π’« cpw 4603  βˆ© cint 4951   class class class wbr 5149   ↦ cmpt 5232  ran crn 5678   ∘ ccom 5681  suc csuc 6367  β„©cio 6494  βŸΆwf 6540  β€˜cfv 6544  β„©crio 7367  Ο‰com 7858   β‰ˆ cen 8939   β‰Ό* cwdom 9562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-wdom 9563  df-card 9937
This theorem is referenced by:  isf32lem12  10362  fin33i  10367
  Copyright terms: Public domain W3C validator