MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem11 Structured version   Visualization version   GIF version

Theorem isf32lem11 9836
Description: Lemma for isfin3-2 9840. Remove hypotheses from isf32lem10 9835. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf32lem11 ((𝐺𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺)
Distinct variable groups:   𝐹,𝑏   𝐺,𝑏
Allowed substitution hint:   𝑉(𝑏)

Proof of Theorem isf32lem11
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑔 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → 𝐹:ω⟶𝒫 𝐺)
2 suceq 6239 . . . . . . . 8 (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐)
32fveq2d 6667 . . . . . . 7 (𝑏 = 𝑐 → (𝐹‘suc 𝑏) = (𝐹‘suc 𝑐))
4 fveq2 6663 . . . . . . 7 (𝑏 = 𝑐 → (𝐹𝑏) = (𝐹𝑐))
53, 4sseq12d 3927 . . . . . 6 (𝑏 = 𝑐 → ((𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ↔ (𝐹‘suc 𝑐) ⊆ (𝐹𝑐)))
65cbvralvw 3361 . . . . 5 (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ↔ ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
76biimpi 219 . . . 4 (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
873ad2ant2 1131 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
9 simp3 1135 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → ¬ ran 𝐹 ∈ ran 𝐹)
10 suceq 6239 . . . . . 6 (𝑒 = 𝑑 → suc 𝑒 = suc 𝑑)
1110fveq2d 6667 . . . . 5 (𝑒 = 𝑑 → (𝐹‘suc 𝑒) = (𝐹‘suc 𝑑))
12 fveq2 6663 . . . . 5 (𝑒 = 𝑑 → (𝐹𝑒) = (𝐹𝑑))
1311, 12psseq12d 4002 . . . 4 (𝑒 = 𝑑 → ((𝐹‘suc 𝑒) ⊊ (𝐹𝑒) ↔ (𝐹‘suc 𝑑) ⊊ (𝐹𝑑)))
1413cbvrabv 3404 . . 3 {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} = {𝑑 ∈ ω ∣ (𝐹‘suc 𝑑) ⊊ (𝐹𝑑)}
15 eqid 2758 . . 3 (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)) = (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓))
16 eqid 2758 . . 3 (( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓))) = (( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))
17 eqid 2758 . . 3 (𝑘𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ ((( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))‘𝑙)))) = (𝑘𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ ((( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))‘𝑙))))
181, 8, 9, 14, 15, 16, 17isf32lem10 9835 . 2 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → (𝐺𝑉 → ω ≼* 𝐺))
1918impcom 411 1 ((𝐺𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084  wcel 2111  wral 3070  {crab 3074  cdif 3857  cin 3859  wss 3860  wpss 3861  𝒫 cpw 4497   cint 4841   class class class wbr 5036  cmpt 5116  ran crn 5529  ccom 5532  suc csuc 6176  cio 6297  wf 6336  cfv 6340  crio 7113  ωcom 7585  cen 8537  * cwdom 9074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-om 7586  df-wrecs 7963  df-recs 8024  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-wdom 9075  df-card 9414
This theorem is referenced by:  isf32lem12  9837  fin33i  9842
  Copyright terms: Public domain W3C validator