| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-2 10261. Remove hypotheses from isf32lem10 10256. (Contributed by Stefan O'Rear, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf32lem11 | ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → 𝐹:ω⟶𝒫 𝐺) | |
| 2 | suceq 6375 | . . . . . . . 8 ⊢ (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐) | |
| 3 | 2 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘suc 𝑏) = (𝐹‘suc 𝑐)) |
| 4 | fveq2 6822 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘𝑏) = (𝐹‘𝑐)) | |
| 5 | 3, 4 | sseq12d 3969 | . . . . . 6 ⊢ (𝑏 = 𝑐 → ((𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐))) |
| 6 | 5 | cbvralvw 3207 | . . . . 5 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
| 7 | 6 | biimpi 216 | . . . 4 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
| 8 | 7 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
| 9 | simp3 1138 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
| 10 | suceq 6375 | . . . . . 6 ⊢ (𝑒 = 𝑑 → suc 𝑒 = suc 𝑑) | |
| 11 | 10 | fveq2d 6826 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘suc 𝑒) = (𝐹‘suc 𝑑)) |
| 12 | fveq2 6822 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘𝑒) = (𝐹‘𝑑)) | |
| 13 | 11, 12 | psseq12d 4048 | . . . 4 ⊢ (𝑒 = 𝑑 → ((𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒) ↔ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑))) |
| 14 | 13 | cbvrabv 3405 | . . 3 ⊢ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} = {𝑑 ∈ ω ∣ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑)} |
| 15 | eqid 2729 | . . 3 ⊢ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) = (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) | |
| 16 | eqid 2729 | . . 3 ⊢ ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) = ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) | |
| 17 | eqid 2729 | . . 3 ⊢ (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) = (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) | |
| 18 | 1, 8, 9, 14, 15, 16, 17 | isf32lem10 10256 | . 2 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| 19 | 18 | impcom 407 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 {crab 3394 ∖ cdif 3900 ∩ cin 3902 ⊆ wss 3903 ⊊ wpss 3904 𝒫 cpw 4551 ∩ cint 4896 class class class wbr 5092 ↦ cmpt 5173 ran crn 5620 ∘ ccom 5623 suc csuc 6309 ℩cio 6436 ⟶wf 6478 ‘cfv 6482 ℩crio 7305 ωcom 7799 ≈ cen 8869 ≼* cwdom 9456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-wdom 9457 df-card 9835 |
| This theorem is referenced by: isf32lem12 10258 fin33i 10263 |
| Copyright terms: Public domain | W3C validator |