MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem11 Structured version   Visualization version   GIF version

Theorem isf32lem11 10432
Description: Lemma for isfin3-2 10436. Remove hypotheses from isf32lem10 10431. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf32lem11 ((𝐺𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺)
Distinct variable groups:   𝐹,𝑏   𝐺,𝑏
Allowed substitution hint:   𝑉(𝑏)

Proof of Theorem isf32lem11
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑔 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → 𝐹:ω⟶𝒫 𝐺)
2 suceq 6461 . . . . . . . 8 (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐)
32fveq2d 6924 . . . . . . 7 (𝑏 = 𝑐 → (𝐹‘suc 𝑏) = (𝐹‘suc 𝑐))
4 fveq2 6920 . . . . . . 7 (𝑏 = 𝑐 → (𝐹𝑏) = (𝐹𝑐))
53, 4sseq12d 4042 . . . . . 6 (𝑏 = 𝑐 → ((𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ↔ (𝐹‘suc 𝑐) ⊆ (𝐹𝑐)))
65cbvralvw 3243 . . . . 5 (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ↔ ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
76biimpi 216 . . . 4 (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
873ad2ant2 1134 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
9 simp3 1138 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → ¬ ran 𝐹 ∈ ran 𝐹)
10 suceq 6461 . . . . . 6 (𝑒 = 𝑑 → suc 𝑒 = suc 𝑑)
1110fveq2d 6924 . . . . 5 (𝑒 = 𝑑 → (𝐹‘suc 𝑒) = (𝐹‘suc 𝑑))
12 fveq2 6920 . . . . 5 (𝑒 = 𝑑 → (𝐹𝑒) = (𝐹𝑑))
1311, 12psseq12d 4120 . . . 4 (𝑒 = 𝑑 → ((𝐹‘suc 𝑒) ⊊ (𝐹𝑒) ↔ (𝐹‘suc 𝑑) ⊊ (𝐹𝑑)))
1413cbvrabv 3454 . . 3 {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} = {𝑑 ∈ ω ∣ (𝐹‘suc 𝑑) ⊊ (𝐹𝑑)}
15 eqid 2740 . . 3 (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)) = (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓))
16 eqid 2740 . . 3 (( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓))) = (( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))
17 eqid 2740 . . 3 (𝑘𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ ((( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))‘𝑙)))) = (𝑘𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ ((( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))‘𝑙))))
181, 8, 9, 14, 15, 16, 17isf32lem10 10431 . 2 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → (𝐺𝑉 → ω ≼* 𝐺))
1918impcom 407 1 ((𝐺𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wcel 2108  wral 3067  {crab 3443  cdif 3973  cin 3975  wss 3976  wpss 3977  𝒫 cpw 4622   cint 4970   class class class wbr 5166  cmpt 5249  ran crn 5701  ccom 5704  suc csuc 6397  cio 6523  wf 6569  cfv 6573  crio 7403  ωcom 7903  cen 9000  * cwdom 9633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-wdom 9634  df-card 10008
This theorem is referenced by:  isf32lem12  10433  fin33i  10438
  Copyright terms: Public domain W3C validator