Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf32lem11 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 9840. Remove hypotheses from isf32lem10 9835. (Contributed by Stefan O'Rear, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem11 | ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → 𝐹:ω⟶𝒫 𝐺) | |
2 | suceq 6239 | . . . . . . . 8 ⊢ (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐) | |
3 | 2 | fveq2d 6667 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘suc 𝑏) = (𝐹‘suc 𝑐)) |
4 | fveq2 6663 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘𝑏) = (𝐹‘𝑐)) | |
5 | 3, 4 | sseq12d 3927 | . . . . . 6 ⊢ (𝑏 = 𝑐 → ((𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐))) |
6 | 5 | cbvralvw 3361 | . . . . 5 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
7 | 6 | biimpi 219 | . . . 4 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
8 | 7 | 3ad2ant2 1131 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
9 | simp3 1135 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
10 | suceq 6239 | . . . . . 6 ⊢ (𝑒 = 𝑑 → suc 𝑒 = suc 𝑑) | |
11 | 10 | fveq2d 6667 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘suc 𝑒) = (𝐹‘suc 𝑑)) |
12 | fveq2 6663 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘𝑒) = (𝐹‘𝑑)) | |
13 | 11, 12 | psseq12d 4002 | . . . 4 ⊢ (𝑒 = 𝑑 → ((𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒) ↔ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑))) |
14 | 13 | cbvrabv 3404 | . . 3 ⊢ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} = {𝑑 ∈ ω ∣ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑)} |
15 | eqid 2758 | . . 3 ⊢ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) = (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) | |
16 | eqid 2758 | . . 3 ⊢ ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) = ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) | |
17 | eqid 2758 | . . 3 ⊢ (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) = (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) | |
18 | 1, 8, 9, 14, 15, 16, 17 | isf32lem10 9835 | . 2 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
19 | 18 | impcom 411 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 ∀wral 3070 {crab 3074 ∖ cdif 3857 ∩ cin 3859 ⊆ wss 3860 ⊊ wpss 3861 𝒫 cpw 4497 ∩ cint 4841 class class class wbr 5036 ↦ cmpt 5116 ran crn 5529 ∘ ccom 5532 suc csuc 6176 ℩cio 6297 ⟶wf 6336 ‘cfv 6340 ℩crio 7113 ωcom 7585 ≈ cen 8537 ≼* cwdom 9074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-om 7586 df-wrecs 7963 df-recs 8024 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-wdom 9075 df-card 9414 |
This theorem is referenced by: isf32lem12 9837 fin33i 9842 |
Copyright terms: Public domain | W3C validator |