Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf32lem11 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 10054. Remove hypotheses from isf32lem10 10049. (Contributed by Stefan O'Rear, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem11 | ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → 𝐹:ω⟶𝒫 𝐺) | |
2 | suceq 6316 | . . . . . . . 8 ⊢ (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐) | |
3 | 2 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘suc 𝑏) = (𝐹‘suc 𝑐)) |
4 | fveq2 6756 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘𝑏) = (𝐹‘𝑐)) | |
5 | 3, 4 | sseq12d 3950 | . . . . . 6 ⊢ (𝑏 = 𝑐 → ((𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐))) |
6 | 5 | cbvralvw 3372 | . . . . 5 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
7 | 6 | biimpi 215 | . . . 4 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
8 | 7 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
9 | simp3 1136 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
10 | suceq 6316 | . . . . . 6 ⊢ (𝑒 = 𝑑 → suc 𝑒 = suc 𝑑) | |
11 | 10 | fveq2d 6760 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘suc 𝑒) = (𝐹‘suc 𝑑)) |
12 | fveq2 6756 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘𝑒) = (𝐹‘𝑑)) | |
13 | 11, 12 | psseq12d 4025 | . . . 4 ⊢ (𝑒 = 𝑑 → ((𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒) ↔ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑))) |
14 | 13 | cbvrabv 3416 | . . 3 ⊢ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} = {𝑑 ∈ ω ∣ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑)} |
15 | eqid 2738 | . . 3 ⊢ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) = (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) | |
16 | eqid 2738 | . . 3 ⊢ ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) = ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) | |
17 | eqid 2738 | . . 3 ⊢ (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) = (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) | |
18 | 1, 8, 9, 14, 15, 16, 17 | isf32lem10 10049 | . 2 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
19 | 18 | impcom 407 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ⊊ wpss 3884 𝒫 cpw 4530 ∩ cint 4876 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ∘ ccom 5584 suc csuc 6253 ℩cio 6374 ⟶wf 6414 ‘cfv 6418 ℩crio 7211 ωcom 7687 ≈ cen 8688 ≼* cwdom 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-wdom 9254 df-card 9628 |
This theorem is referenced by: isf32lem12 10051 fin33i 10056 |
Copyright terms: Public domain | W3C validator |