![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem11 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 9390. Remove hypotheses from isf32lem10 9385. (Contributed by Stefan O'Rear, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem11 | ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1129 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → 𝐹:ω⟶𝒫 𝐺) | |
2 | suceq 5933 | . . . . . . . 8 ⊢ (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐) | |
3 | 2 | fveq2d 6336 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘suc 𝑏) = (𝐹‘suc 𝑐)) |
4 | fveq2 6332 | . . . . . . 7 ⊢ (𝑏 = 𝑐 → (𝐹‘𝑏) = (𝐹‘𝑐)) | |
5 | 3, 4 | sseq12d 3781 | . . . . . 6 ⊢ (𝑏 = 𝑐 → ((𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐))) |
6 | 5 | cbvralv 3319 | . . . . 5 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ↔ ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
7 | 6 | biimpi 206 | . . . 4 ⊢ (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
8 | 7 | 3ad2ant2 1127 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹‘𝑐)) |
9 | simp3 1131 | . . 3 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
10 | suceq 5933 | . . . . . 6 ⊢ (𝑒 = 𝑑 → suc 𝑒 = suc 𝑑) | |
11 | 10 | fveq2d 6336 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘suc 𝑒) = (𝐹‘suc 𝑑)) |
12 | fveq2 6332 | . . . . 5 ⊢ (𝑒 = 𝑑 → (𝐹‘𝑒) = (𝐹‘𝑑)) | |
13 | 11, 12 | psseq12d 3849 | . . . 4 ⊢ (𝑒 = 𝑑 → ((𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒) ↔ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑))) |
14 | 13 | cbvrabv 3348 | . . 3 ⊢ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} = {𝑑 ∈ ω ∣ (𝐹‘suc 𝑑) ⊊ (𝐹‘𝑑)} |
15 | eqid 2770 | . . 3 ⊢ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) = (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)) | |
16 | eqid 2770 | . . 3 ⊢ ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) = ((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓))) | |
17 | eqid 2770 | . . 3 ⊢ (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) = (𝑘 ∈ 𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ (((ℎ ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} ↦ ((𝐹‘ℎ) ∖ (𝐹‘suc ℎ))) ∘ (𝑓 ∈ ω ↦ (℩𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹‘𝑒)}) ≈ 𝑓)))‘𝑙)))) | |
18 | 1, 8, 9, 14, 15, 16, 17 | isf32lem10 9385 | . 2 ⊢ ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹) → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
19 | 18 | impcom 394 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1070 ∈ wcel 2144 ∀wral 3060 {crab 3064 ∖ cdif 3718 ∩ cin 3720 ⊆ wss 3721 ⊊ wpss 3722 𝒫 cpw 4295 ∩ cint 4609 class class class wbr 4784 ↦ cmpt 4861 ran crn 5250 ∘ ccom 5253 suc csuc 5868 ℩cio 5992 ⟶wf 6027 ‘cfv 6031 ℩crio 6752 ωcom 7211 ≈ cen 8105 ≼* cwdom 8617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-om 7212 df-wrecs 7558 df-recs 7620 df-1o 7712 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-wdom 8619 df-card 8964 |
This theorem is referenced by: isf32lem12 9387 fin33i 9392 |
Copyright terms: Public domain | W3C validator |