MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem35 Structured version   Visualization version   GIF version

Theorem fin23lem35 10416
Description: Lemma for fin23 10458. Strict order property of 𝑌. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem35 ((𝜑𝐴 ∈ ω) → ran (𝑌‘suc 𝐴) ⊊ ran (𝑌𝐴))
Distinct variable groups:   𝑔,𝑎,𝑖,𝑗,𝑥   𝐴,𝑎,𝑗   ,𝑎,𝐺,𝑔,𝑖,𝑗,𝑥   𝐹,𝑎   𝜑,𝑎,𝑗   𝑌,𝑎,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐴(𝑥,𝑔,,𝑖)   𝐹(𝑥,𝑔,,𝑖,𝑗)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem35
StepHypRef Expression
1 fin23lem33.f . . . . 5 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
2 fin23lem.f . . . . 5 (𝜑:ω–1-1→V)
3 fin23lem.g . . . . 5 (𝜑 ran 𝐺)
4 fin23lem.h . . . . 5 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
5 fin23lem.i . . . . 5 𝑌 = (rec(𝑖, ) ↾ ω)
61, 2, 3, 4, 5fin23lem34 10415 . . . 4 ((𝜑𝐴 ∈ ω) → ((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺))
7 fvex 6933 . . . . . . 7 (𝑌𝐴) ∈ V
8 f1eq1 6812 . . . . . . . . 9 (𝑗 = (𝑌𝐴) → (𝑗:ω–1-1→V ↔ (𝑌𝐴):ω–1-1→V))
9 rneq 5961 . . . . . . . . . . 11 (𝑗 = (𝑌𝐴) → ran 𝑗 = ran (𝑌𝐴))
109unieqd 4944 . . . . . . . . . 10 (𝑗 = (𝑌𝐴) → ran 𝑗 = ran (𝑌𝐴))
1110sseq1d 4040 . . . . . . . . 9 (𝑗 = (𝑌𝐴) → ( ran 𝑗𝐺 ran (𝑌𝐴) ⊆ 𝐺))
128, 11anbi12d 631 . . . . . . . 8 (𝑗 = (𝑌𝐴) → ((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) ↔ ((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺)))
13 fveq2 6920 . . . . . . . . . 10 (𝑗 = (𝑌𝐴) → (𝑖𝑗) = (𝑖‘(𝑌𝐴)))
14 f1eq1 6812 . . . . . . . . . 10 ((𝑖𝑗) = (𝑖‘(𝑌𝐴)) → ((𝑖𝑗):ω–1-1→V ↔ (𝑖‘(𝑌𝐴)):ω–1-1→V))
1513, 14syl 17 . . . . . . . . 9 (𝑗 = (𝑌𝐴) → ((𝑖𝑗):ω–1-1→V ↔ (𝑖‘(𝑌𝐴)):ω–1-1→V))
1613rneqd 5963 . . . . . . . . . . 11 (𝑗 = (𝑌𝐴) → ran (𝑖𝑗) = ran (𝑖‘(𝑌𝐴)))
1716unieqd 4944 . . . . . . . . . 10 (𝑗 = (𝑌𝐴) → ran (𝑖𝑗) = ran (𝑖‘(𝑌𝐴)))
1817, 10psseq12d 4120 . . . . . . . . 9 (𝑗 = (𝑌𝐴) → ( ran (𝑖𝑗) ⊊ ran 𝑗 ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴)))
1915, 18anbi12d 631 . . . . . . . 8 (𝑗 = (𝑌𝐴) → (((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗) ↔ ((𝑖‘(𝑌𝐴)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴))))
2012, 19imbi12d 344 . . . . . . 7 (𝑗 = (𝑌𝐴) → (((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)) ↔ (((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺) → ((𝑖‘(𝑌𝐴)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴)))))
217, 20spcv 3618 . . . . . 6 (∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)) → (((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺) → ((𝑖‘(𝑌𝐴)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴))))
224, 21syl 17 . . . . 5 (𝜑 → (((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺) → ((𝑖‘(𝑌𝐴)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴))))
2322adantr 480 . . . 4 ((𝜑𝐴 ∈ ω) → (((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺) → ((𝑖‘(𝑌𝐴)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴))))
246, 23mpd 15 . . 3 ((𝜑𝐴 ∈ ω) → ((𝑖‘(𝑌𝐴)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴)))
2524simprd 495 . 2 ((𝜑𝐴 ∈ ω) → ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴))
26 frsuc 8493 . . . . . . 7 (𝐴 ∈ ω → ((rec(𝑖, ) ↾ ω)‘suc 𝐴) = (𝑖‘((rec(𝑖, ) ↾ ω)‘𝐴)))
2726adantl 481 . . . . . 6 ((𝜑𝐴 ∈ ω) → ((rec(𝑖, ) ↾ ω)‘suc 𝐴) = (𝑖‘((rec(𝑖, ) ↾ ω)‘𝐴)))
285fveq1i 6921 . . . . . 6 (𝑌‘suc 𝐴) = ((rec(𝑖, ) ↾ ω)‘suc 𝐴)
295fveq1i 6921 . . . . . . 7 (𝑌𝐴) = ((rec(𝑖, ) ↾ ω)‘𝐴)
3029fveq2i 6923 . . . . . 6 (𝑖‘(𝑌𝐴)) = (𝑖‘((rec(𝑖, ) ↾ ω)‘𝐴))
3127, 28, 303eqtr4g 2805 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝑌‘suc 𝐴) = (𝑖‘(𝑌𝐴)))
3231rneqd 5963 . . . 4 ((𝜑𝐴 ∈ ω) → ran (𝑌‘suc 𝐴) = ran (𝑖‘(𝑌𝐴)))
3332unieqd 4944 . . 3 ((𝜑𝐴 ∈ ω) → ran (𝑌‘suc 𝐴) = ran (𝑖‘(𝑌𝐴)))
3433psseq1d 4118 . 2 ((𝜑𝐴 ∈ ω) → ( ran (𝑌‘suc 𝐴) ⊊ ran (𝑌𝐴) ↔ ran (𝑖‘(𝑌𝐴)) ⊊ ran (𝑌𝐴)))
3525, 34mpbird 257 1 ((𝜑𝐴 ∈ ω) → ran (𝑌‘suc 𝐴) ⊊ ran (𝑌𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488  wss 3976  wpss 3977  𝒫 cpw 4622   cuni 4931   cint 4970  ran crn 5701  cres 5702  suc csuc 6397  1-1wf1 6570  cfv 6573  (class class class)co 7448  ωcom 7903  reccrdg 8465  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466
This theorem is referenced by:  fin23lem36  10417  fin23lem38  10418  fin23lem39  10419
  Copyright terms: Public domain W3C validator