MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem5 Structured version   Visualization version   GIF version

Theorem isf32lem5 10397
Description: Lemma for isfin3-2 10407. There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
Assertion
Ref Expression
isf32lem5 (𝜑 → ¬ 𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isf32lem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.a . . . 4 (𝜑𝐹:ω⟶𝒫 𝐺)
2 isf32lem.b . . . 4 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
3 isf32lem.c . . . 4 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
41, 2, 3isf32lem2 10394 . . 3 ((𝜑𝑎 ∈ ω) → ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
54ralrimiva 3146 . 2 (𝜑 → ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
6 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
76ssrab3 4082 . . . . . . 7 𝑆 ⊆ ω
8 nnunifi 9327 . . . . . . 7 ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)
97, 8mpan 690 . . . . . 6 (𝑆 ∈ Fin → 𝑆 ∈ ω)
109adantl 481 . . . . 5 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ ω)
11 elssuni 4937 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 𝑆)
12 nnon 7893 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → 𝑏 ∈ On)
13 omsson 7891 . . . . . . . . . . . . . . 15 ω ⊆ On
1413, 10sselid 3981 . . . . . . . . . . . . . 14 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ On)
15 ontri1 6418 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑆 ∈ On) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1612, 14, 15syl2anr 597 . . . . . . . . . . . . 13 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1711, 16imbitrid 244 . . . . . . . . . . . 12 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏𝑆 → ¬ 𝑆𝑏))
1817con2d 134 . . . . . . . . . . 11 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ 𝑏𝑆))
1918impr 454 . . . . . . . . . 10 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏𝑆)
206eleq2i 2833 . . . . . . . . . 10 (𝑏𝑆𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
2119, 20sylnib 328 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
22 suceq 6450 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
2322fveq2d 6910 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹‘suc 𝑦) = (𝐹‘suc 𝑏))
24 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2523, 24psseq12d 4097 . . . . . . . . . . 11 (𝑦 = 𝑏 → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2625elrab3 3693 . . . . . . . . . 10 (𝑏 ∈ ω → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2726ad2antrl 728 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2821, 27mtbid 324 . . . . . . . 8 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))
2928expr 456 . . . . . . 7 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
30 imnan 399 . . . . . . 7 (( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3129, 30sylib 218 . . . . . 6 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3231nrexdv 3149 . . . . 5 ((𝜑𝑆 ∈ Fin) → ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
33 eleq1 2829 . . . . . . . . 9 (𝑎 = 𝑆 → (𝑎𝑏 𝑆𝑏))
3433anbi1d 631 . . . . . . . 8 (𝑎 = 𝑆 → ((𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3534rexbidv 3179 . . . . . . 7 (𝑎 = 𝑆 → (∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3635notbid 318 . . . . . 6 (𝑎 = 𝑆 → (¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3736rspcev 3622 . . . . 5 (( 𝑆 ∈ ω ∧ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3810, 32, 37syl2anc 584 . . . 4 ((𝜑𝑆 ∈ Fin) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
39 rexnal 3100 . . . 4 (∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4038, 39sylib 218 . . 3 ((𝜑𝑆 ∈ Fin) → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4140ex 412 . 2 (𝜑 → (𝑆 ∈ Fin → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
425, 41mt2d 136 1 (𝜑 → ¬ 𝑆 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  wss 3951  wpss 3952  𝒫 cpw 4600   cuni 4907   cint 4946  ran crn 5686  Oncon0 6384  suc csuc 6386  wf 6557  cfv 6561  ωcom 7887  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-en 8986  df-fin 8989
This theorem is referenced by:  isf32lem6  10398  isf32lem7  10399  isf32lem8  10400
  Copyright terms: Public domain W3C validator