MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem5 Structured version   Visualization version   GIF version

Theorem isf32lem5 10113
Description: Lemma for isfin3-2 10123. There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
Assertion
Ref Expression
isf32lem5 (𝜑 → ¬ 𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isf32lem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.a . . . 4 (𝜑𝐹:ω⟶𝒫 𝐺)
2 isf32lem.b . . . 4 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
3 isf32lem.c . . . 4 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
41, 2, 3isf32lem2 10110 . . 3 ((𝜑𝑎 ∈ ω) → ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
54ralrimiva 3103 . 2 (𝜑 → ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
6 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
76ssrab3 4015 . . . . . . 7 𝑆 ⊆ ω
8 nnunifi 9065 . . . . . . 7 ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)
97, 8mpan 687 . . . . . 6 (𝑆 ∈ Fin → 𝑆 ∈ ω)
109adantl 482 . . . . 5 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ ω)
11 elssuni 4871 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 𝑆)
12 nnon 7718 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → 𝑏 ∈ On)
13 omsson 7716 . . . . . . . . . . . . . . 15 ω ⊆ On
1413, 10sselid 3919 . . . . . . . . . . . . . 14 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ On)
15 ontri1 6300 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑆 ∈ On) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1612, 14, 15syl2anr 597 . . . . . . . . . . . . 13 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1711, 16syl5ib 243 . . . . . . . . . . . 12 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏𝑆 → ¬ 𝑆𝑏))
1817con2d 134 . . . . . . . . . . 11 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ 𝑏𝑆))
1918impr 455 . . . . . . . . . 10 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏𝑆)
206eleq2i 2830 . . . . . . . . . 10 (𝑏𝑆𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
2119, 20sylnib 328 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
22 suceq 6331 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
2322fveq2d 6778 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹‘suc 𝑦) = (𝐹‘suc 𝑏))
24 fveq2 6774 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2523, 24psseq12d 4029 . . . . . . . . . . 11 (𝑦 = 𝑏 → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2625elrab3 3625 . . . . . . . . . 10 (𝑏 ∈ ω → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2726ad2antrl 725 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2821, 27mtbid 324 . . . . . . . 8 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))
2928expr 457 . . . . . . 7 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
30 imnan 400 . . . . . . 7 (( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3129, 30sylib 217 . . . . . 6 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3231nrexdv 3198 . . . . 5 ((𝜑𝑆 ∈ Fin) → ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
33 eleq1 2826 . . . . . . . . 9 (𝑎 = 𝑆 → (𝑎𝑏 𝑆𝑏))
3433anbi1d 630 . . . . . . . 8 (𝑎 = 𝑆 → ((𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3534rexbidv 3226 . . . . . . 7 (𝑎 = 𝑆 → (∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3635notbid 318 . . . . . 6 (𝑎 = 𝑆 → (¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3736rspcev 3561 . . . . 5 (( 𝑆 ∈ ω ∧ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3810, 32, 37syl2anc 584 . . . 4 ((𝜑𝑆 ∈ Fin) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
39 rexnal 3169 . . . 4 (∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4038, 39sylib 217 . . 3 ((𝜑𝑆 ∈ Fin) → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4140ex 413 . 2 (𝜑 → (𝑆 ∈ Fin → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
425, 41mt2d 136 1 (𝜑 → ¬ 𝑆 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887  wpss 3888  𝒫 cpw 4533   cuni 4839   cint 4879  ran crn 5590  Oncon0 6266  suc csuc 6268  wf 6429  cfv 6433  ωcom 7712  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-en 8734  df-fin 8737
This theorem is referenced by:  isf32lem6  10114  isf32lem7  10115  isf32lem8  10116
  Copyright terms: Public domain W3C validator