MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem5 Structured version   Visualization version   GIF version

Theorem isf32lem5 10394
Description: Lemma for isfin3-2 10404. There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
Assertion
Ref Expression
isf32lem5 (𝜑 → ¬ 𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isf32lem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.a . . . 4 (𝜑𝐹:ω⟶𝒫 𝐺)
2 isf32lem.b . . . 4 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
3 isf32lem.c . . . 4 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
41, 2, 3isf32lem2 10391 . . 3 ((𝜑𝑎 ∈ ω) → ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
54ralrimiva 3143 . 2 (𝜑 → ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
6 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
76ssrab3 4091 . . . . . . 7 𝑆 ⊆ ω
8 nnunifi 9324 . . . . . . 7 ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)
97, 8mpan 690 . . . . . 6 (𝑆 ∈ Fin → 𝑆 ∈ ω)
109adantl 481 . . . . 5 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ ω)
11 elssuni 4941 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 𝑆)
12 nnon 7892 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → 𝑏 ∈ On)
13 omsson 7890 . . . . . . . . . . . . . . 15 ω ⊆ On
1413, 10sselid 3992 . . . . . . . . . . . . . 14 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ On)
15 ontri1 6419 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑆 ∈ On) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1612, 14, 15syl2anr 597 . . . . . . . . . . . . 13 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1711, 16imbitrid 244 . . . . . . . . . . . 12 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏𝑆 → ¬ 𝑆𝑏))
1817con2d 134 . . . . . . . . . . 11 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ 𝑏𝑆))
1918impr 454 . . . . . . . . . 10 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏𝑆)
206eleq2i 2830 . . . . . . . . . 10 (𝑏𝑆𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
2119, 20sylnib 328 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
22 suceq 6451 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
2322fveq2d 6910 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹‘suc 𝑦) = (𝐹‘suc 𝑏))
24 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2523, 24psseq12d 4106 . . . . . . . . . . 11 (𝑦 = 𝑏 → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2625elrab3 3695 . . . . . . . . . 10 (𝑏 ∈ ω → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2726ad2antrl 728 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2821, 27mtbid 324 . . . . . . . 8 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))
2928expr 456 . . . . . . 7 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
30 imnan 399 . . . . . . 7 (( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3129, 30sylib 218 . . . . . 6 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3231nrexdv 3146 . . . . 5 ((𝜑𝑆 ∈ Fin) → ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
33 eleq1 2826 . . . . . . . . 9 (𝑎 = 𝑆 → (𝑎𝑏 𝑆𝑏))
3433anbi1d 631 . . . . . . . 8 (𝑎 = 𝑆 → ((𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3534rexbidv 3176 . . . . . . 7 (𝑎 = 𝑆 → (∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3635notbid 318 . . . . . 6 (𝑎 = 𝑆 → (¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3736rspcev 3621 . . . . 5 (( 𝑆 ∈ ω ∧ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3810, 32, 37syl2anc 584 . . . 4 ((𝜑𝑆 ∈ Fin) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
39 rexnal 3097 . . . 4 (∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4038, 39sylib 218 . . 3 ((𝜑𝑆 ∈ Fin) → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4140ex 412 . 2 (𝜑 → (𝑆 ∈ Fin → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
425, 41mt2d 136 1 (𝜑 → ¬ 𝑆 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  {crab 3432  wss 3962  wpss 3963  𝒫 cpw 4604   cuni 4911   cint 4950  ran crn 5689  Oncon0 6385  suc csuc 6387  wf 6558  cfv 6562  ωcom 7886  Fincfn 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-en 8984  df-fin 8987
This theorem is referenced by:  isf32lem6  10395  isf32lem7  10396  isf32lem8  10397
  Copyright terms: Public domain W3C validator