MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem5 Structured version   Visualization version   GIF version

Theorem isf32lem5 10317
Description: Lemma for isfin3-2 10327. There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
Assertion
Ref Expression
isf32lem5 (𝜑 → ¬ 𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isf32lem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.a . . . 4 (𝜑𝐹:ω⟶𝒫 𝐺)
2 isf32lem.b . . . 4 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
3 isf32lem.c . . . 4 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
41, 2, 3isf32lem2 10314 . . 3 ((𝜑𝑎 ∈ ω) → ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
54ralrimiva 3126 . 2 (𝜑 → ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
6 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
76ssrab3 4048 . . . . . . 7 𝑆 ⊆ ω
8 nnunifi 9245 . . . . . . 7 ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)
97, 8mpan 690 . . . . . 6 (𝑆 ∈ Fin → 𝑆 ∈ ω)
109adantl 481 . . . . 5 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ ω)
11 elssuni 4904 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 𝑆)
12 nnon 7851 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → 𝑏 ∈ On)
13 omsson 7849 . . . . . . . . . . . . . . 15 ω ⊆ On
1413, 10sselid 3947 . . . . . . . . . . . . . 14 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ On)
15 ontri1 6369 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑆 ∈ On) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1612, 14, 15syl2anr 597 . . . . . . . . . . . . 13 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1711, 16imbitrid 244 . . . . . . . . . . . 12 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏𝑆 → ¬ 𝑆𝑏))
1817con2d 134 . . . . . . . . . . 11 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ 𝑏𝑆))
1918impr 454 . . . . . . . . . 10 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏𝑆)
206eleq2i 2821 . . . . . . . . . 10 (𝑏𝑆𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
2119, 20sylnib 328 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
22 suceq 6403 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
2322fveq2d 6865 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹‘suc 𝑦) = (𝐹‘suc 𝑏))
24 fveq2 6861 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2523, 24psseq12d 4063 . . . . . . . . . . 11 (𝑦 = 𝑏 → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2625elrab3 3663 . . . . . . . . . 10 (𝑏 ∈ ω → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2726ad2antrl 728 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2821, 27mtbid 324 . . . . . . . 8 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))
2928expr 456 . . . . . . 7 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
30 imnan 399 . . . . . . 7 (( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3129, 30sylib 218 . . . . . 6 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3231nrexdv 3129 . . . . 5 ((𝜑𝑆 ∈ Fin) → ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
33 eleq1 2817 . . . . . . . . 9 (𝑎 = 𝑆 → (𝑎𝑏 𝑆𝑏))
3433anbi1d 631 . . . . . . . 8 (𝑎 = 𝑆 → ((𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3534rexbidv 3158 . . . . . . 7 (𝑎 = 𝑆 → (∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3635notbid 318 . . . . . 6 (𝑎 = 𝑆 → (¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3736rspcev 3591 . . . . 5 (( 𝑆 ∈ ω ∧ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3810, 32, 37syl2anc 584 . . . 4 ((𝜑𝑆 ∈ Fin) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
39 rexnal 3083 . . . 4 (∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4038, 39sylib 218 . . 3 ((𝜑𝑆 ∈ Fin) → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4140ex 412 . 2 (𝜑 → (𝑆 ∈ Fin → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
425, 41mt2d 136 1 (𝜑 → ¬ 𝑆 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917  wpss 3918  𝒫 cpw 4566   cuni 4874   cint 4913  ran crn 5642  Oncon0 6335  suc csuc 6337  wf 6510  cfv 6514  ωcom 7845  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-en 8922  df-fin 8925
This theorem is referenced by:  isf32lem6  10318  isf32lem7  10319  isf32lem8  10320
  Copyright terms: Public domain W3C validator