| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . 6
⊢ (𝑎 = ∅ → (𝑌‘𝑎) = (𝑌‘∅)) |
| 2 | | f1eq1 6799 |
. . . . . 6
⊢ ((𝑌‘𝑎) = (𝑌‘∅) → ((𝑌‘𝑎):ω–1-1→V ↔ (𝑌‘∅):ω–1-1→V)) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝑎 = ∅ → ((𝑌‘𝑎):ω–1-1→V ↔ (𝑌‘∅):ω–1-1→V)) |
| 4 | 1 | rneqd 5949 |
. . . . . . 7
⊢ (𝑎 = ∅ → ran (𝑌‘𝑎) = ran (𝑌‘∅)) |
| 5 | 4 | unieqd 4920 |
. . . . . 6
⊢ (𝑎 = ∅ → ∪ ran (𝑌‘𝑎) = ∪ ran (𝑌‘∅)) |
| 6 | 5 | sseq1d 4015 |
. . . . 5
⊢ (𝑎 = ∅ → (∪ ran (𝑌‘𝑎) ⊆ 𝐺 ↔ ∪ ran
(𝑌‘∅) ⊆
𝐺)) |
| 7 | 3, 6 | anbi12d 632 |
. . . 4
⊢ (𝑎 = ∅ → (((𝑌‘𝑎):ω–1-1→V ∧ ∪ ran (𝑌‘𝑎) ⊆ 𝐺) ↔ ((𝑌‘∅):ω–1-1→V ∧ ∪ ran (𝑌‘∅) ⊆ 𝐺))) |
| 8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑎 = ∅ → ((𝜑 → ((𝑌‘𝑎):ω–1-1→V ∧ ∪ ran (𝑌‘𝑎) ⊆ 𝐺)) ↔ (𝜑 → ((𝑌‘∅):ω–1-1→V ∧ ∪ ran (𝑌‘∅) ⊆ 𝐺)))) |
| 9 | | fveq2 6906 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝑌‘𝑎) = (𝑌‘𝑏)) |
| 10 | | f1eq1 6799 |
. . . . . 6
⊢ ((𝑌‘𝑎) = (𝑌‘𝑏) → ((𝑌‘𝑎):ω–1-1→V ↔ (𝑌‘𝑏):ω–1-1→V)) |
| 11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝑎 = 𝑏 → ((𝑌‘𝑎):ω–1-1→V ↔ (𝑌‘𝑏):ω–1-1→V)) |
| 12 | 9 | rneqd 5949 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → ran (𝑌‘𝑎) = ran (𝑌‘𝑏)) |
| 13 | 12 | unieqd 4920 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ∪ ran
(𝑌‘𝑎) = ∪ ran (𝑌‘𝑏)) |
| 14 | 13 | sseq1d 4015 |
. . . . 5
⊢ (𝑎 = 𝑏 → (∪ ran
(𝑌‘𝑎) ⊆ 𝐺 ↔ ∪ ran
(𝑌‘𝑏) ⊆ 𝐺)) |
| 15 | 11, 14 | anbi12d 632 |
. . . 4
⊢ (𝑎 = 𝑏 → (((𝑌‘𝑎):ω–1-1→V ∧ ∪ ran (𝑌‘𝑎) ⊆ 𝐺) ↔ ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺))) |
| 16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝑏 → ((𝜑 → ((𝑌‘𝑎):ω–1-1→V ∧ ∪ ran (𝑌‘𝑎) ⊆ 𝐺)) ↔ (𝜑 → ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺)))) |
| 17 | | fveq2 6906 |
. . . . . 6
⊢ (𝑎 = suc 𝑏 → (𝑌‘𝑎) = (𝑌‘suc 𝑏)) |
| 18 | | f1eq1 6799 |
. . . . . 6
⊢ ((𝑌‘𝑎) = (𝑌‘suc 𝑏) → ((𝑌‘𝑎):ω–1-1→V ↔ (𝑌‘suc 𝑏):ω–1-1→V)) |
| 19 | 17, 18 | syl 17 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → ((𝑌‘𝑎):ω–1-1→V ↔ (𝑌‘suc 𝑏):ω–1-1→V)) |
| 20 | 17 | rneqd 5949 |
. . . . . . 7
⊢ (𝑎 = suc 𝑏 → ran (𝑌‘𝑎) = ran (𝑌‘suc 𝑏)) |
| 21 | 20 | unieqd 4920 |
. . . . . 6
⊢ (𝑎 = suc 𝑏 → ∪ ran
(𝑌‘𝑎) = ∪ ran (𝑌‘suc 𝑏)) |
| 22 | 21 | sseq1d 4015 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → (∪ ran
(𝑌‘𝑎) ⊆ 𝐺 ↔ ∪ ran
(𝑌‘suc 𝑏) ⊆ 𝐺)) |
| 23 | 19, 22 | anbi12d 632 |
. . . 4
⊢ (𝑎 = suc 𝑏 → (((𝑌‘𝑎):ω–1-1→V ∧ ∪ ran (𝑌‘𝑎) ⊆ 𝐺) ↔ ((𝑌‘suc 𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘suc 𝑏) ⊆ 𝐺))) |
| 24 | 23 | imbi2d 340 |
. . 3
⊢ (𝑎 = suc 𝑏 → ((𝜑 → ((𝑌‘𝑎):ω–1-1→V ∧ ∪ ran (𝑌‘𝑎) ⊆ 𝐺)) ↔ (𝜑 → ((𝑌‘suc 𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘suc 𝑏) ⊆ 𝐺)))) |
| 25 | | fveq2 6906 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑌‘𝑎) = (𝑌‘𝐴)) |
| 26 | | f1eq1 6799 |
. . . . . 6
⊢ ((𝑌‘𝑎) = (𝑌‘𝐴) → ((𝑌‘𝑎):ω–1-1→V ↔ (𝑌‘𝐴):ω–1-1→V)) |
| 27 | 25, 26 | syl 17 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((𝑌‘𝑎):ω–1-1→V ↔ (𝑌‘𝐴):ω–1-1→V)) |
| 28 | 25 | rneqd 5949 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ran (𝑌‘𝑎) = ran (𝑌‘𝐴)) |
| 29 | 28 | unieqd 4920 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ∪ ran
(𝑌‘𝑎) = ∪ ran (𝑌‘𝐴)) |
| 30 | 29 | sseq1d 4015 |
. . . . 5
⊢ (𝑎 = 𝐴 → (∪ ran
(𝑌‘𝑎) ⊆ 𝐺 ↔ ∪ ran
(𝑌‘𝐴) ⊆ 𝐺)) |
| 31 | 27, 30 | anbi12d 632 |
. . . 4
⊢ (𝑎 = 𝐴 → (((𝑌‘𝑎):ω–1-1→V ∧ ∪ ran (𝑌‘𝑎) ⊆ 𝐺) ↔ ((𝑌‘𝐴):ω–1-1→V ∧ ∪ ran (𝑌‘𝐴) ⊆ 𝐺))) |
| 32 | 31 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝜑 → ((𝑌‘𝑎):ω–1-1→V ∧ ∪ ran (𝑌‘𝑎) ⊆ 𝐺)) ↔ (𝜑 → ((𝑌‘𝐴):ω–1-1→V ∧ ∪ ran (𝑌‘𝐴) ⊆ 𝐺)))) |
| 33 | | fin23lem.f |
. . . 4
⊢ (𝜑 → ℎ:ω–1-1→V) |
| 34 | | fin23lem.g |
. . . 4
⊢ (𝜑 → ∪ ran ℎ
⊆ 𝐺) |
| 35 | | fin23lem.i |
. . . . . . . 8
⊢ 𝑌 = (rec(𝑖, ℎ) ↾ ω) |
| 36 | 35 | fveq1i 6907 |
. . . . . . 7
⊢ (𝑌‘∅) = ((rec(𝑖, ℎ) ↾
ω)‘∅) |
| 37 | | fr0g 8476 |
. . . . . . . 8
⊢ (ℎ ∈ V → ((rec(𝑖, ℎ) ↾ ω)‘∅) = ℎ) |
| 38 | 37 | elv 3485 |
. . . . . . 7
⊢
((rec(𝑖, ℎ) ↾ ω)‘∅)
= ℎ |
| 39 | 36, 38 | eqtri 2765 |
. . . . . 6
⊢ (𝑌‘∅) = ℎ |
| 40 | | f1eq1 6799 |
. . . . . 6
⊢ ((𝑌‘∅) = ℎ → ((𝑌‘∅):ω–1-1→V ↔ ℎ:ω–1-1→V)) |
| 41 | 39, 40 | ax-mp 5 |
. . . . 5
⊢ ((𝑌‘∅):ω–1-1→V ↔ ℎ:ω–1-1→V) |
| 42 | 39 | rneqi 5948 |
. . . . . . 7
⊢ ran
(𝑌‘∅) = ran
ℎ |
| 43 | 42 | unieqi 4919 |
. . . . . 6
⊢ ∪ ran (𝑌‘∅) = ∪ ran ℎ |
| 44 | 43 | sseq1i 4012 |
. . . . 5
⊢ (∪ ran (𝑌‘∅) ⊆ 𝐺 ↔ ∪ ran
ℎ ⊆ 𝐺) |
| 45 | 41, 44 | anbi12i 628 |
. . . 4
⊢ (((𝑌‘∅):ω–1-1→V ∧ ∪ ran (𝑌‘∅) ⊆ 𝐺) ↔ (ℎ:ω–1-1→V ∧ ∪ ran ℎ ⊆ 𝐺)) |
| 46 | 33, 34, 45 | sylanbrc 583 |
. . 3
⊢ (𝜑 → ((𝑌‘∅):ω–1-1→V ∧ ∪ ran (𝑌‘∅) ⊆ 𝐺)) |
| 47 | | fin23lem.h |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran
𝑗))) |
| 48 | | fvex 6919 |
. . . . . . . . . . 11
⊢ (𝑌‘𝑏) ∈ V |
| 49 | | f1eq1 6799 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑌‘𝑏) → (𝑗:ω–1-1→V ↔ (𝑌‘𝑏):ω–1-1→V)) |
| 50 | | rneq 5947 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑌‘𝑏) → ran 𝑗 = ran (𝑌‘𝑏)) |
| 51 | 50 | unieqd 4920 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑌‘𝑏) → ∪ ran
𝑗 = ∪ ran (𝑌‘𝑏)) |
| 52 | 51 | sseq1d 4015 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑌‘𝑏) → (∪ ran
𝑗 ⊆ 𝐺 ↔ ∪ ran
(𝑌‘𝑏) ⊆ 𝐺)) |
| 53 | 49, 52 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑌‘𝑏) → ((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) ↔ ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺))) |
| 54 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑌‘𝑏) → (𝑖‘𝑗) = (𝑖‘(𝑌‘𝑏))) |
| 55 | | f1eq1 6799 |
. . . . . . . . . . . . . 14
⊢ ((𝑖‘𝑗) = (𝑖‘(𝑌‘𝑏)) → ((𝑖‘𝑗):ω–1-1→V ↔ (𝑖‘(𝑌‘𝑏)):ω–1-1→V)) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑌‘𝑏) → ((𝑖‘𝑗):ω–1-1→V ↔ (𝑖‘(𝑌‘𝑏)):ω–1-1→V)) |
| 57 | 54 | rneqd 5949 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑌‘𝑏) → ran (𝑖‘𝑗) = ran (𝑖‘(𝑌‘𝑏))) |
| 58 | 57 | unieqd 4920 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑌‘𝑏) → ∪ ran
(𝑖‘𝑗) = ∪ ran (𝑖‘(𝑌‘𝑏))) |
| 59 | 58, 51 | psseq12d 4097 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑌‘𝑏) → (∪ ran
(𝑖‘𝑗) ⊊ ∪ ran
𝑗 ↔ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏))) |
| 60 | 56, 59 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑌‘𝑏) → (((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran
𝑗) ↔ ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏)))) |
| 61 | 53, 60 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑌‘𝑏) → (((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran
𝑗)) ↔ (((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺) → ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏))))) |
| 62 | 48, 61 | spcv 3605 |
. . . . . . . . . 10
⊢
(∀𝑗((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran
𝑗)) → (((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺) → ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏)))) |
| 63 | 47, 62 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺) → ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏)))) |
| 64 | 63 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺)) → ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏))) |
| 65 | | pssss 4098 |
. . . . . . . . . . . 12
⊢ (∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏) → ∪ ran
(𝑖‘(𝑌‘𝑏)) ⊆ ∪ ran
(𝑌‘𝑏)) |
| 66 | | sstr 3992 |
. . . . . . . . . . . 12
⊢ ((∪ ran (𝑖‘(𝑌‘𝑏)) ⊆ ∪ ran
(𝑌‘𝑏) ∧ ∪ ran
(𝑌‘𝑏) ⊆ 𝐺) → ∪ ran
(𝑖‘(𝑌‘𝑏)) ⊆ 𝐺) |
| 67 | 65, 66 | sylan 580 |
. . . . . . . . . . 11
⊢ ((∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏) ∧ ∪ ran
(𝑌‘𝑏) ⊆ 𝐺) → ∪ ran
(𝑖‘(𝑌‘𝑏)) ⊆ 𝐺) |
| 68 | 67 | expcom 413 |
. . . . . . . . . 10
⊢ (∪ ran (𝑌‘𝑏) ⊆ 𝐺 → (∪ ran
(𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏) → ∪ ran
(𝑖‘(𝑌‘𝑏)) ⊆ 𝐺)) |
| 69 | 68 | anim2d 612 |
. . . . . . . . 9
⊢ (∪ ran (𝑌‘𝑏) ⊆ 𝐺 → (((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏)) → ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊆ 𝐺))) |
| 70 | 69 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺)) → (((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊊ ∪ ran
(𝑌‘𝑏)) → ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊆ 𝐺))) |
| 71 | 64, 70 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺)) → ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊆ 𝐺)) |
| 72 | 71 | 3adant1 1131 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧ 𝜑 ∧ ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺)) → ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊆ 𝐺)) |
| 73 | | frsuc 8477 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω →
((rec(𝑖, ℎ) ↾ ω)‘suc 𝑏) = (𝑖‘((rec(𝑖, ℎ) ↾ ω)‘𝑏))) |
| 74 | 35 | fveq1i 6907 |
. . . . . . . . 9
⊢ (𝑌‘suc 𝑏) = ((rec(𝑖, ℎ) ↾ ω)‘suc 𝑏) |
| 75 | 35 | fveq1i 6907 |
. . . . . . . . . 10
⊢ (𝑌‘𝑏) = ((rec(𝑖, ℎ) ↾ ω)‘𝑏) |
| 76 | 75 | fveq2i 6909 |
. . . . . . . . 9
⊢ (𝑖‘(𝑌‘𝑏)) = (𝑖‘((rec(𝑖, ℎ) ↾ ω)‘𝑏)) |
| 77 | 73, 74, 76 | 3eqtr4g 2802 |
. . . . . . . 8
⊢ (𝑏 ∈ ω → (𝑌‘suc 𝑏) = (𝑖‘(𝑌‘𝑏))) |
| 78 | | f1eq1 6799 |
. . . . . . . . 9
⊢ ((𝑌‘suc 𝑏) = (𝑖‘(𝑌‘𝑏)) → ((𝑌‘suc 𝑏):ω–1-1→V ↔ (𝑖‘(𝑌‘𝑏)):ω–1-1→V)) |
| 79 | | rneq 5947 |
. . . . . . . . . . 11
⊢ ((𝑌‘suc 𝑏) = (𝑖‘(𝑌‘𝑏)) → ran (𝑌‘suc 𝑏) = ran (𝑖‘(𝑌‘𝑏))) |
| 80 | 79 | unieqd 4920 |
. . . . . . . . . 10
⊢ ((𝑌‘suc 𝑏) = (𝑖‘(𝑌‘𝑏)) → ∪ ran
(𝑌‘suc 𝑏) = ∪
ran (𝑖‘(𝑌‘𝑏))) |
| 81 | 80 | sseq1d 4015 |
. . . . . . . . 9
⊢ ((𝑌‘suc 𝑏) = (𝑖‘(𝑌‘𝑏)) → (∪ ran
(𝑌‘suc 𝑏) ⊆ 𝐺 ↔ ∪ ran
(𝑖‘(𝑌‘𝑏)) ⊆ 𝐺)) |
| 82 | 78, 81 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝑌‘suc 𝑏) = (𝑖‘(𝑌‘𝑏)) → (((𝑌‘suc 𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘suc 𝑏) ⊆ 𝐺) ↔ ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊆ 𝐺))) |
| 83 | 77, 82 | syl 17 |
. . . . . . 7
⊢ (𝑏 ∈ ω → (((𝑌‘suc 𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘suc 𝑏) ⊆ 𝐺) ↔ ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊆ 𝐺))) |
| 84 | 83 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧ 𝜑 ∧ ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺)) → (((𝑌‘suc 𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘suc 𝑏) ⊆ 𝐺) ↔ ((𝑖‘(𝑌‘𝑏)):ω–1-1→V ∧ ∪ ran (𝑖‘(𝑌‘𝑏)) ⊆ 𝐺))) |
| 85 | 72, 84 | mpbird 257 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧ 𝜑 ∧ ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺)) → ((𝑌‘suc 𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘suc 𝑏) ⊆ 𝐺)) |
| 86 | 85 | 3exp 1120 |
. . . 4
⊢ (𝑏 ∈ ω → (𝜑 → (((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺) → ((𝑌‘suc 𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘suc 𝑏) ⊆ 𝐺)))) |
| 87 | 86 | a2d 29 |
. . 3
⊢ (𝑏 ∈ ω → ((𝜑 → ((𝑌‘𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘𝑏) ⊆ 𝐺)) → (𝜑 → ((𝑌‘suc 𝑏):ω–1-1→V ∧ ∪ ran (𝑌‘suc 𝑏) ⊆ 𝐺)))) |
| 88 | 8, 16, 24, 32, 46, 87 | finds 7918 |
. 2
⊢ (𝐴 ∈ ω → (𝜑 → ((𝑌‘𝐴):ω–1-1→V ∧ ∪ ran (𝑌‘𝐴) ⊆ 𝐺))) |
| 89 | 88 | impcom 407 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝑌‘𝐴):ω–1-1→V ∧ ∪ ran (𝑌‘𝐴) ⊆ 𝐺)) |