MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem34 Structured version   Visualization version   GIF version

Theorem fin23lem34 9770
Description: Lemma for fin23 9813. Establish induction invariants on 𝑌 which parameterizes our contradictory chain of subsets. In this section, is the hypothetically assumed family of subsets, 𝑔 is the ground set, and 𝑖 is the induction function constructed in the previous section. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem34 ((𝜑𝐴 ∈ ω) → ((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺))
Distinct variable groups:   𝑔,𝑎,𝑖,𝑗,𝑥   𝐴,𝑎,𝑗   ,𝑎,𝐺,𝑔,𝑖,𝑗,𝑥   𝐹,𝑎   𝜑,𝑎,𝑗   𝑌,𝑎,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐴(𝑥,𝑔,,𝑖)   𝐹(𝑥,𝑔,,𝑖,𝑗)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem34
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . . . 6 (𝑎 = ∅ → (𝑌𝑎) = (𝑌‘∅))
2 f1eq1 6572 . . . . . 6 ((𝑌𝑎) = (𝑌‘∅) → ((𝑌𝑎):ω–1-1→V ↔ (𝑌‘∅):ω–1-1→V))
31, 2syl 17 . . . . 5 (𝑎 = ∅ → ((𝑌𝑎):ω–1-1→V ↔ (𝑌‘∅):ω–1-1→V))
41rneqd 5810 . . . . . . 7 (𝑎 = ∅ → ran (𝑌𝑎) = ran (𝑌‘∅))
54unieqd 4854 . . . . . 6 (𝑎 = ∅ → ran (𝑌𝑎) = ran (𝑌‘∅))
65sseq1d 4000 . . . . 5 (𝑎 = ∅ → ( ran (𝑌𝑎) ⊆ 𝐺 ran (𝑌‘∅) ⊆ 𝐺))
73, 6anbi12d 632 . . . 4 (𝑎 = ∅ → (((𝑌𝑎):ω–1-1→V ∧ ran (𝑌𝑎) ⊆ 𝐺) ↔ ((𝑌‘∅):ω–1-1→V ∧ ran (𝑌‘∅) ⊆ 𝐺)))
87imbi2d 343 . . 3 (𝑎 = ∅ → ((𝜑 → ((𝑌𝑎):ω–1-1→V ∧ ran (𝑌𝑎) ⊆ 𝐺)) ↔ (𝜑 → ((𝑌‘∅):ω–1-1→V ∧ ran (𝑌‘∅) ⊆ 𝐺))))
9 fveq2 6672 . . . . . 6 (𝑎 = 𝑏 → (𝑌𝑎) = (𝑌𝑏))
10 f1eq1 6572 . . . . . 6 ((𝑌𝑎) = (𝑌𝑏) → ((𝑌𝑎):ω–1-1→V ↔ (𝑌𝑏):ω–1-1→V))
119, 10syl 17 . . . . 5 (𝑎 = 𝑏 → ((𝑌𝑎):ω–1-1→V ↔ (𝑌𝑏):ω–1-1→V))
129rneqd 5810 . . . . . . 7 (𝑎 = 𝑏 → ran (𝑌𝑎) = ran (𝑌𝑏))
1312unieqd 4854 . . . . . 6 (𝑎 = 𝑏 ran (𝑌𝑎) = ran (𝑌𝑏))
1413sseq1d 4000 . . . . 5 (𝑎 = 𝑏 → ( ran (𝑌𝑎) ⊆ 𝐺 ran (𝑌𝑏) ⊆ 𝐺))
1511, 14anbi12d 632 . . . 4 (𝑎 = 𝑏 → (((𝑌𝑎):ω–1-1→V ∧ ran (𝑌𝑎) ⊆ 𝐺) ↔ ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)))
1615imbi2d 343 . . 3 (𝑎 = 𝑏 → ((𝜑 → ((𝑌𝑎):ω–1-1→V ∧ ran (𝑌𝑎) ⊆ 𝐺)) ↔ (𝜑 → ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺))))
17 fveq2 6672 . . . . . 6 (𝑎 = suc 𝑏 → (𝑌𝑎) = (𝑌‘suc 𝑏))
18 f1eq1 6572 . . . . . 6 ((𝑌𝑎) = (𝑌‘suc 𝑏) → ((𝑌𝑎):ω–1-1→V ↔ (𝑌‘suc 𝑏):ω–1-1→V))
1917, 18syl 17 . . . . 5 (𝑎 = suc 𝑏 → ((𝑌𝑎):ω–1-1→V ↔ (𝑌‘suc 𝑏):ω–1-1→V))
2017rneqd 5810 . . . . . . 7 (𝑎 = suc 𝑏 → ran (𝑌𝑎) = ran (𝑌‘suc 𝑏))
2120unieqd 4854 . . . . . 6 (𝑎 = suc 𝑏 ran (𝑌𝑎) = ran (𝑌‘suc 𝑏))
2221sseq1d 4000 . . . . 5 (𝑎 = suc 𝑏 → ( ran (𝑌𝑎) ⊆ 𝐺 ran (𝑌‘suc 𝑏) ⊆ 𝐺))
2319, 22anbi12d 632 . . . 4 (𝑎 = suc 𝑏 → (((𝑌𝑎):ω–1-1→V ∧ ran (𝑌𝑎) ⊆ 𝐺) ↔ ((𝑌‘suc 𝑏):ω–1-1→V ∧ ran (𝑌‘suc 𝑏) ⊆ 𝐺)))
2423imbi2d 343 . . 3 (𝑎 = suc 𝑏 → ((𝜑 → ((𝑌𝑎):ω–1-1→V ∧ ran (𝑌𝑎) ⊆ 𝐺)) ↔ (𝜑 → ((𝑌‘suc 𝑏):ω–1-1→V ∧ ran (𝑌‘suc 𝑏) ⊆ 𝐺))))
25 fveq2 6672 . . . . . 6 (𝑎 = 𝐴 → (𝑌𝑎) = (𝑌𝐴))
26 f1eq1 6572 . . . . . 6 ((𝑌𝑎) = (𝑌𝐴) → ((𝑌𝑎):ω–1-1→V ↔ (𝑌𝐴):ω–1-1→V))
2725, 26syl 17 . . . . 5 (𝑎 = 𝐴 → ((𝑌𝑎):ω–1-1→V ↔ (𝑌𝐴):ω–1-1→V))
2825rneqd 5810 . . . . . . 7 (𝑎 = 𝐴 → ran (𝑌𝑎) = ran (𝑌𝐴))
2928unieqd 4854 . . . . . 6 (𝑎 = 𝐴 ran (𝑌𝑎) = ran (𝑌𝐴))
3029sseq1d 4000 . . . . 5 (𝑎 = 𝐴 → ( ran (𝑌𝑎) ⊆ 𝐺 ran (𝑌𝐴) ⊆ 𝐺))
3127, 30anbi12d 632 . . . 4 (𝑎 = 𝐴 → (((𝑌𝑎):ω–1-1→V ∧ ran (𝑌𝑎) ⊆ 𝐺) ↔ ((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺)))
3231imbi2d 343 . . 3 (𝑎 = 𝐴 → ((𝜑 → ((𝑌𝑎):ω–1-1→V ∧ ran (𝑌𝑎) ⊆ 𝐺)) ↔ (𝜑 → ((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺))))
33 fin23lem.f . . . 4 (𝜑:ω–1-1→V)
34 fin23lem.g . . . 4 (𝜑 ran 𝐺)
35 fin23lem.i . . . . . . . 8 𝑌 = (rec(𝑖, ) ↾ ω)
3635fveq1i 6673 . . . . . . 7 (𝑌‘∅) = ((rec(𝑖, ) ↾ ω)‘∅)
37 fr0g 8073 . . . . . . . 8 ( ∈ V → ((rec(𝑖, ) ↾ ω)‘∅) = )
3837elv 3501 . . . . . . 7 ((rec(𝑖, ) ↾ ω)‘∅) =
3936, 38eqtri 2846 . . . . . 6 (𝑌‘∅) =
40 f1eq1 6572 . . . . . 6 ((𝑌‘∅) = → ((𝑌‘∅):ω–1-1→V ↔ :ω–1-1→V))
4139, 40ax-mp 5 . . . . 5 ((𝑌‘∅):ω–1-1→V ↔ :ω–1-1→V)
4239rneqi 5809 . . . . . . 7 ran (𝑌‘∅) = ran
4342unieqi 4853 . . . . . 6 ran (𝑌‘∅) = ran
4443sseq1i 3997 . . . . 5 ( ran (𝑌‘∅) ⊆ 𝐺 ran 𝐺)
4541, 44anbi12i 628 . . . 4 (((𝑌‘∅):ω–1-1→V ∧ ran (𝑌‘∅) ⊆ 𝐺) ↔ (:ω–1-1→V ∧ ran 𝐺))
4633, 34, 45sylanbrc 585 . . 3 (𝜑 → ((𝑌‘∅):ω–1-1→V ∧ ran (𝑌‘∅) ⊆ 𝐺))
47 fin23lem.h . . . . . . . . . 10 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
48 fvex 6685 . . . . . . . . . . 11 (𝑌𝑏) ∈ V
49 f1eq1 6572 . . . . . . . . . . . . 13 (𝑗 = (𝑌𝑏) → (𝑗:ω–1-1→V ↔ (𝑌𝑏):ω–1-1→V))
50 rneq 5808 . . . . . . . . . . . . . . 15 (𝑗 = (𝑌𝑏) → ran 𝑗 = ran (𝑌𝑏))
5150unieqd 4854 . . . . . . . . . . . . . 14 (𝑗 = (𝑌𝑏) → ran 𝑗 = ran (𝑌𝑏))
5251sseq1d 4000 . . . . . . . . . . . . 13 (𝑗 = (𝑌𝑏) → ( ran 𝑗𝐺 ran (𝑌𝑏) ⊆ 𝐺))
5349, 52anbi12d 632 . . . . . . . . . . . 12 (𝑗 = (𝑌𝑏) → ((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) ↔ ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)))
54 fveq2 6672 . . . . . . . . . . . . . 14 (𝑗 = (𝑌𝑏) → (𝑖𝑗) = (𝑖‘(𝑌𝑏)))
55 f1eq1 6572 . . . . . . . . . . . . . 14 ((𝑖𝑗) = (𝑖‘(𝑌𝑏)) → ((𝑖𝑗):ω–1-1→V ↔ (𝑖‘(𝑌𝑏)):ω–1-1→V))
5654, 55syl 17 . . . . . . . . . . . . 13 (𝑗 = (𝑌𝑏) → ((𝑖𝑗):ω–1-1→V ↔ (𝑖‘(𝑌𝑏)):ω–1-1→V))
5754rneqd 5810 . . . . . . . . . . . . . . 15 (𝑗 = (𝑌𝑏) → ran (𝑖𝑗) = ran (𝑖‘(𝑌𝑏)))
5857unieqd 4854 . . . . . . . . . . . . . 14 (𝑗 = (𝑌𝑏) → ran (𝑖𝑗) = ran (𝑖‘(𝑌𝑏)))
5958, 51psseq12d 4073 . . . . . . . . . . . . 13 (𝑗 = (𝑌𝑏) → ( ran (𝑖𝑗) ⊊ ran 𝑗 ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏)))
6056, 59anbi12d 632 . . . . . . . . . . . 12 (𝑗 = (𝑌𝑏) → (((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗) ↔ ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏))))
6153, 60imbi12d 347 . . . . . . . . . . 11 (𝑗 = (𝑌𝑏) → (((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)) ↔ (((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺) → ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏)))))
6248, 61spcv 3608 . . . . . . . . . 10 (∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)) → (((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺) → ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏))))
6347, 62syl 17 . . . . . . . . 9 (𝜑 → (((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺) → ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏))))
6463imp 409 . . . . . . . 8 ((𝜑 ∧ ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)) → ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏)))
65 pssss 4074 . . . . . . . . . . . 12 ( ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏) → ran (𝑖‘(𝑌𝑏)) ⊆ ran (𝑌𝑏))
66 sstr 3977 . . . . . . . . . . . 12 (( ran (𝑖‘(𝑌𝑏)) ⊆ ran (𝑌𝑏) ∧ ran (𝑌𝑏) ⊆ 𝐺) → ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺)
6765, 66sylan 582 . . . . . . . . . . 11 (( ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏) ∧ ran (𝑌𝑏) ⊆ 𝐺) → ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺)
6867expcom 416 . . . . . . . . . 10 ( ran (𝑌𝑏) ⊆ 𝐺 → ( ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏) → ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺))
6968anim2d 613 . . . . . . . . 9 ( ran (𝑌𝑏) ⊆ 𝐺 → (((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏)) → ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺)))
7069ad2antll 727 . . . . . . . 8 ((𝜑 ∧ ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)) → (((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊊ ran (𝑌𝑏)) → ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺)))
7164, 70mpd 15 . . . . . . 7 ((𝜑 ∧ ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)) → ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺))
72713adant1 1126 . . . . . 6 ((𝑏 ∈ ω ∧ 𝜑 ∧ ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)) → ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺))
73 frsuc 8074 . . . . . . . . 9 (𝑏 ∈ ω → ((rec(𝑖, ) ↾ ω)‘suc 𝑏) = (𝑖‘((rec(𝑖, ) ↾ ω)‘𝑏)))
7435fveq1i 6673 . . . . . . . . 9 (𝑌‘suc 𝑏) = ((rec(𝑖, ) ↾ ω)‘suc 𝑏)
7535fveq1i 6673 . . . . . . . . . 10 (𝑌𝑏) = ((rec(𝑖, ) ↾ ω)‘𝑏)
7675fveq2i 6675 . . . . . . . . 9 (𝑖‘(𝑌𝑏)) = (𝑖‘((rec(𝑖, ) ↾ ω)‘𝑏))
7773, 74, 763eqtr4g 2883 . . . . . . . 8 (𝑏 ∈ ω → (𝑌‘suc 𝑏) = (𝑖‘(𝑌𝑏)))
78 f1eq1 6572 . . . . . . . . 9 ((𝑌‘suc 𝑏) = (𝑖‘(𝑌𝑏)) → ((𝑌‘suc 𝑏):ω–1-1→V ↔ (𝑖‘(𝑌𝑏)):ω–1-1→V))
79 rneq 5808 . . . . . . . . . . 11 ((𝑌‘suc 𝑏) = (𝑖‘(𝑌𝑏)) → ran (𝑌‘suc 𝑏) = ran (𝑖‘(𝑌𝑏)))
8079unieqd 4854 . . . . . . . . . 10 ((𝑌‘suc 𝑏) = (𝑖‘(𝑌𝑏)) → ran (𝑌‘suc 𝑏) = ran (𝑖‘(𝑌𝑏)))
8180sseq1d 4000 . . . . . . . . 9 ((𝑌‘suc 𝑏) = (𝑖‘(𝑌𝑏)) → ( ran (𝑌‘suc 𝑏) ⊆ 𝐺 ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺))
8278, 81anbi12d 632 . . . . . . . 8 ((𝑌‘suc 𝑏) = (𝑖‘(𝑌𝑏)) → (((𝑌‘suc 𝑏):ω–1-1→V ∧ ran (𝑌‘suc 𝑏) ⊆ 𝐺) ↔ ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺)))
8377, 82syl 17 . . . . . . 7 (𝑏 ∈ ω → (((𝑌‘suc 𝑏):ω–1-1→V ∧ ran (𝑌‘suc 𝑏) ⊆ 𝐺) ↔ ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺)))
84833ad2ant1 1129 . . . . . 6 ((𝑏 ∈ ω ∧ 𝜑 ∧ ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)) → (((𝑌‘suc 𝑏):ω–1-1→V ∧ ran (𝑌‘suc 𝑏) ⊆ 𝐺) ↔ ((𝑖‘(𝑌𝑏)):ω–1-1→V ∧ ran (𝑖‘(𝑌𝑏)) ⊆ 𝐺)))
8572, 84mpbird 259 . . . . 5 ((𝑏 ∈ ω ∧ 𝜑 ∧ ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)) → ((𝑌‘suc 𝑏):ω–1-1→V ∧ ran (𝑌‘suc 𝑏) ⊆ 𝐺))
86853exp 1115 . . . 4 (𝑏 ∈ ω → (𝜑 → (((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺) → ((𝑌‘suc 𝑏):ω–1-1→V ∧ ran (𝑌‘suc 𝑏) ⊆ 𝐺))))
8786a2d 29 . . 3 (𝑏 ∈ ω → ((𝜑 → ((𝑌𝑏):ω–1-1→V ∧ ran (𝑌𝑏) ⊆ 𝐺)) → (𝜑 → ((𝑌‘suc 𝑏):ω–1-1→V ∧ ran (𝑌‘suc 𝑏) ⊆ 𝐺))))
888, 16, 24, 32, 46, 87finds 7610 . 2 (𝐴 ∈ ω → (𝜑 → ((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺)))
8988impcom 410 1 ((𝜑𝐴 ∈ ω) → ((𝑌𝐴):ω–1-1→V ∧ ran (𝑌𝐴) ⊆ 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  {cab 2801  wral 3140  Vcvv 3496  wss 3938  wpss 3939  c0 4293  𝒫 cpw 4541   cuni 4840   cint 4878  ran crn 5558  cres 5559  suc csuc 6195  1-1wf1 6354  cfv 6357  (class class class)co 7158  ωcom 7582  reccrdg 8047  m cmap 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048
This theorem is referenced by:  fin23lem35  9771  fin23lem39  9774
  Copyright terms: Public domain W3C validator