MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem32 Structured version   Visualization version   GIF version

Theorem fin23lem32 10335
Description: Lemma for fin23 10380. Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem32 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧   𝑎,𝑏,𝑖,𝑢,𝑡   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃,𝑏   𝑣,𝑎,𝑅,𝑏,𝑖,𝑢   𝑈,𝑎,𝑏,𝑖,𝑢,𝑣,𝑧   𝑓,𝑎,𝑍,𝑏   𝑔,𝑎,𝐺,𝑏,𝑡,𝑓,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑓,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,𝑖,𝑎,𝑏)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑓,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑖,𝑏)   𝐺(𝑧,𝑤,𝑣,𝑢,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem32
StepHypRef Expression
1 fin23lem.a . . . . . . . 8 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
2 fin23lem17.f . . . . . . . 8 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
3 fin23lem.b . . . . . . . 8 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
4 fin23lem.c . . . . . . . 8 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
5 fin23lem.d . . . . . . . 8 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
6 fin23lem.e . . . . . . . 8 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
71, 2, 3, 4, 5, 6fin23lem28 10331 . . . . . . 7 (𝑡:ω–1-1→V → 𝑍:ω–1-1→V)
87ad2antrl 726 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍:ω–1-1→V)
9 simprl 769 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω–1-1→V)
10 simpl 483 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝐺𝐹)
11 simprr 771 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑡𝐺)
121, 2, 3, 4, 5, 6fin23lem31 10334 . . . . . . 7 ((𝑡:ω–1-1→V ∧ 𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
139, 10, 11, 12syl3anc 1371 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑍 ran 𝑡)
14 f1fn 6785 . . . . . . . . . . . 12 (𝑡:ω–1-1→V → 𝑡 Fn ω)
15 dffn3 6727 . . . . . . . . . . . 12 (𝑡 Fn ω ↔ 𝑡:ω⟶ran 𝑡)
1614, 15sylib 217 . . . . . . . . . . 11 (𝑡:ω–1-1→V → 𝑡:ω⟶ran 𝑡)
1716ad2antrl 726 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω⟶ran 𝑡)
18 sspwuni 5102 . . . . . . . . . . . 12 (ran 𝑡 ⊆ 𝒫 𝐺 ran 𝑡𝐺)
1918biimpri 227 . . . . . . . . . . 11 ( ran 𝑡𝐺 → ran 𝑡 ⊆ 𝒫 𝐺)
2019ad2antll 727 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑡 ⊆ 𝒫 𝐺)
2117, 20fssd 6732 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω⟶𝒫 𝐺)
22 pwexg 5375 . . . . . . . . . . 11 (𝐺𝐹 → 𝒫 𝐺 ∈ V)
2322adantr 481 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝒫 𝐺 ∈ V)
24 vex 3478 . . . . . . . . . . . 12 𝑡 ∈ V
25 f1f 6784 . . . . . . . . . . . 12 (𝑡:ω–1-1→V → 𝑡:ω⟶V)
26 dmfex 7894 . . . . . . . . . . . 12 ((𝑡 ∈ V ∧ 𝑡:ω⟶V) → ω ∈ V)
2724, 25, 26sylancr 587 . . . . . . . . . . 11 (𝑡:ω–1-1→V → ω ∈ V)
2827ad2antrl 726 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ω ∈ V)
2923, 28elmapd 8830 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → (𝑡 ∈ (𝒫 𝐺m ω) ↔ 𝑡:ω⟶𝒫 𝐺))
3021, 29mpbird 256 . . . . . . . 8 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡 ∈ (𝒫 𝐺m ω))
31 f1f 6784 . . . . . . . . . 10 (𝑍:ω–1-1→V → 𝑍:ω⟶V)
328, 31syl 17 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍:ω⟶V)
3332, 28fexd 7225 . . . . . . . 8 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍 ∈ V)
34 eqid 2732 . . . . . . . . 9 (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
3534fvmpt2 7006 . . . . . . . 8 ((𝑡 ∈ (𝒫 𝐺m ω) ∧ 𝑍 ∈ V) → ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍)
3630, 33, 35syl2anc 584 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍)
37 f1eq1 6779 . . . . . . . 8 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ↔ 𝑍:ω–1-1→V))
38 rneq 5933 . . . . . . . . . 10 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = ran 𝑍)
3938unieqd 4921 . . . . . . . . 9 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = ran 𝑍)
4039psseq1d 4091 . . . . . . . 8 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ( ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡 ran 𝑍 ran 𝑡))
4137, 40anbi12d 631 . . . . . . 7 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ((((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡) ↔ (𝑍:ω–1-1→V ∧ ran 𝑍 ran 𝑡)))
4236, 41syl 17 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ((((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡) ↔ (𝑍:ω–1-1→V ∧ ran 𝑍 ran 𝑡)))
438, 13, 42mpbir2and 711 . . . . 5 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))
4443ex 413 . . . 4 (𝐺𝐹 → ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
4544alrimiv 1930 . . 3 (𝐺𝐹 → ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
46 ovex 7438 . . . . 5 (𝒫 𝐺m ω) ∈ V
4746mptex 7221 . . . 4 (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) ∈ V
48 nfmpt1 5255 . . . . . 6 𝑡(𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
4948nfeq2 2920 . . . . 5 𝑡 𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
50 fveq1 6887 . . . . . . . 8 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (𝑓𝑡) = ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
51 f1eq1 6779 . . . . . . . 8 ((𝑓𝑡) = ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) → ((𝑓𝑡):ω–1-1→V ↔ ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V))
5250, 51syl 17 . . . . . . 7 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ((𝑓𝑡):ω–1-1→V ↔ ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V))
5350rneqd 5935 . . . . . . . . 9 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ran (𝑓𝑡) = ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
5453unieqd 4921 . . . . . . . 8 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ran (𝑓𝑡) = ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
5554psseq1d 4091 . . . . . . 7 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ( ran (𝑓𝑡) ⊊ ran 𝑡 ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))
5652, 55anbi12d 631 . . . . . 6 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡) ↔ (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
5756imbi2d 340 . . . . 5 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)) ↔ ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))))
5849, 57albid 2215 . . . 4 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)) ↔ ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))))
5947, 58spcev 3596 . . 3 (∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)) → ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
6045, 59syl 17 . 2 (𝐺𝐹 → ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
61 f1eq1 6779 . . . . . 6 (𝑏 = 𝑡 → (𝑏:ω–1-1→V ↔ 𝑡:ω–1-1→V))
62 rneq 5933 . . . . . . . 8 (𝑏 = 𝑡 → ran 𝑏 = ran 𝑡)
6362unieqd 4921 . . . . . . 7 (𝑏 = 𝑡 ran 𝑏 = ran 𝑡)
6463sseq1d 4012 . . . . . 6 (𝑏 = 𝑡 → ( ran 𝑏𝐺 ran 𝑡𝐺))
6561, 64anbi12d 631 . . . . 5 (𝑏 = 𝑡 → ((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) ↔ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)))
66 fveq2 6888 . . . . . . 7 (𝑏 = 𝑡 → (𝑓𝑏) = (𝑓𝑡))
67 f1eq1 6779 . . . . . . 7 ((𝑓𝑏) = (𝑓𝑡) → ((𝑓𝑏):ω–1-1→V ↔ (𝑓𝑡):ω–1-1→V))
6866, 67syl 17 . . . . . 6 (𝑏 = 𝑡 → ((𝑓𝑏):ω–1-1→V ↔ (𝑓𝑡):ω–1-1→V))
6966rneqd 5935 . . . . . . . 8 (𝑏 = 𝑡 → ran (𝑓𝑏) = ran (𝑓𝑡))
7069unieqd 4921 . . . . . . 7 (𝑏 = 𝑡 ran (𝑓𝑏) = ran (𝑓𝑡))
7170, 63psseq12d 4093 . . . . . 6 (𝑏 = 𝑡 → ( ran (𝑓𝑏) ⊊ ran 𝑏 ran (𝑓𝑡) ⊊ ran 𝑡))
7268, 71anbi12d 631 . . . . 5 (𝑏 = 𝑡 → (((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏) ↔ ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7365, 72imbi12d 344 . . . 4 (𝑏 = 𝑡 → (((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡))))
7473cbvalvw 2039 . . 3 (∀𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7574exbii 1850 . 2 (∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7660, 75sylibr 233 1 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wral 3061  {crab 3432  Vcvv 3474  cdif 3944  cin 3946  wss 3947  wpss 3948  c0 4321  ifcif 4527  𝒫 cpw 4601   cuni 4907   cint 4949   class class class wbr 5147  cmpt 5230  ran crn 5676  ccom 5679  suc csuc 6363   Fn wfn 6535  wf 6536  1-1wf1 6537  cfv 6540  crio 7360  (class class class)co 7405  cmpo 7407  ωcom 7851  seqωcseqom 8443  m cmap 8816  cen 8932  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-seqom 8444  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930
This theorem is referenced by:  fin23lem33  10336
  Copyright terms: Public domain W3C validator