MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem32 Structured version   Visualization version   GIF version

Theorem fin23lem32 10413
Description: Lemma for fin23 10458. Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem32 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧   𝑎,𝑏,𝑖,𝑢,𝑡   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃,𝑏   𝑣,𝑎,𝑅,𝑏,𝑖,𝑢   𝑈,𝑎,𝑏,𝑖,𝑢,𝑣,𝑧   𝑓,𝑎,𝑍,𝑏   𝑔,𝑎,𝐺,𝑏,𝑡,𝑓,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑓,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,𝑖,𝑎,𝑏)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑓,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑖,𝑏)   𝐺(𝑧,𝑤,𝑣,𝑢,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem32
StepHypRef Expression
1 fin23lem.a . . . . . . . 8 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
2 fin23lem17.f . . . . . . . 8 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
3 fin23lem.b . . . . . . . 8 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
4 fin23lem.c . . . . . . . 8 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
5 fin23lem.d . . . . . . . 8 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
6 fin23lem.e . . . . . . . 8 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
71, 2, 3, 4, 5, 6fin23lem28 10409 . . . . . . 7 (𝑡:ω–1-1→V → 𝑍:ω–1-1→V)
87ad2antrl 727 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍:ω–1-1→V)
9 simprl 770 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω–1-1→V)
10 simpl 482 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝐺𝐹)
11 simprr 772 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑡𝐺)
121, 2, 3, 4, 5, 6fin23lem31 10412 . . . . . . 7 ((𝑡:ω–1-1→V ∧ 𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
139, 10, 11, 12syl3anc 1371 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑍 ran 𝑡)
14 f1fn 6818 . . . . . . . . . . . 12 (𝑡:ω–1-1→V → 𝑡 Fn ω)
15 dffn3 6759 . . . . . . . . . . . 12 (𝑡 Fn ω ↔ 𝑡:ω⟶ran 𝑡)
1614, 15sylib 218 . . . . . . . . . . 11 (𝑡:ω–1-1→V → 𝑡:ω⟶ran 𝑡)
1716ad2antrl 727 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω⟶ran 𝑡)
18 sspwuni 5123 . . . . . . . . . . . 12 (ran 𝑡 ⊆ 𝒫 𝐺 ran 𝑡𝐺)
1918biimpri 228 . . . . . . . . . . 11 ( ran 𝑡𝐺 → ran 𝑡 ⊆ 𝒫 𝐺)
2019ad2antll 728 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑡 ⊆ 𝒫 𝐺)
2117, 20fssd 6764 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω⟶𝒫 𝐺)
22 pwexg 5396 . . . . . . . . . . 11 (𝐺𝐹 → 𝒫 𝐺 ∈ V)
2322adantr 480 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝒫 𝐺 ∈ V)
24 vex 3492 . . . . . . . . . . . 12 𝑡 ∈ V
25 f1f 6817 . . . . . . . . . . . 12 (𝑡:ω–1-1→V → 𝑡:ω⟶V)
26 dmfex 7945 . . . . . . . . . . . 12 ((𝑡 ∈ V ∧ 𝑡:ω⟶V) → ω ∈ V)
2724, 25, 26sylancr 586 . . . . . . . . . . 11 (𝑡:ω–1-1→V → ω ∈ V)
2827ad2antrl 727 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ω ∈ V)
2923, 28elmapd 8898 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → (𝑡 ∈ (𝒫 𝐺m ω) ↔ 𝑡:ω⟶𝒫 𝐺))
3021, 29mpbird 257 . . . . . . . 8 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡 ∈ (𝒫 𝐺m ω))
31 f1f 6817 . . . . . . . . . 10 (𝑍:ω–1-1→V → 𝑍:ω⟶V)
328, 31syl 17 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍:ω⟶V)
3332, 28fexd 7264 . . . . . . . 8 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍 ∈ V)
34 eqid 2740 . . . . . . . . 9 (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
3534fvmpt2 7040 . . . . . . . 8 ((𝑡 ∈ (𝒫 𝐺m ω) ∧ 𝑍 ∈ V) → ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍)
3630, 33, 35syl2anc 583 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍)
37 f1eq1 6812 . . . . . . . 8 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ↔ 𝑍:ω–1-1→V))
38 rneq 5961 . . . . . . . . . 10 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = ran 𝑍)
3938unieqd 4944 . . . . . . . . 9 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = ran 𝑍)
4039psseq1d 4118 . . . . . . . 8 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ( ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡 ran 𝑍 ran 𝑡))
4137, 40anbi12d 631 . . . . . . 7 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ((((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡) ↔ (𝑍:ω–1-1→V ∧ ran 𝑍 ran 𝑡)))
4236, 41syl 17 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ((((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡) ↔ (𝑍:ω–1-1→V ∧ ran 𝑍 ran 𝑡)))
438, 13, 42mpbir2and 712 . . . . 5 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))
4443ex 412 . . . 4 (𝐺𝐹 → ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
4544alrimiv 1926 . . 3 (𝐺𝐹 → ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
46 ovex 7481 . . . . 5 (𝒫 𝐺m ω) ∈ V
4746mptex 7260 . . . 4 (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) ∈ V
48 nfmpt1 5274 . . . . . 6 𝑡(𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
4948nfeq2 2926 . . . . 5 𝑡 𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
50 fveq1 6919 . . . . . . . 8 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (𝑓𝑡) = ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
51 f1eq1 6812 . . . . . . . 8 ((𝑓𝑡) = ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) → ((𝑓𝑡):ω–1-1→V ↔ ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V))
5250, 51syl 17 . . . . . . 7 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ((𝑓𝑡):ω–1-1→V ↔ ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V))
5350rneqd 5963 . . . . . . . . 9 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ran (𝑓𝑡) = ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
5453unieqd 4944 . . . . . . . 8 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ran (𝑓𝑡) = ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
5554psseq1d 4118 . . . . . . 7 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ( ran (𝑓𝑡) ⊊ ran 𝑡 ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))
5652, 55anbi12d 631 . . . . . 6 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡) ↔ (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
5756imbi2d 340 . . . . 5 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)) ↔ ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))))
5849, 57albid 2223 . . . 4 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)) ↔ ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))))
5947, 58spcev 3619 . . 3 (∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)) → ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
6045, 59syl 17 . 2 (𝐺𝐹 → ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
61 f1eq1 6812 . . . . . 6 (𝑏 = 𝑡 → (𝑏:ω–1-1→V ↔ 𝑡:ω–1-1→V))
62 rneq 5961 . . . . . . . 8 (𝑏 = 𝑡 → ran 𝑏 = ran 𝑡)
6362unieqd 4944 . . . . . . 7 (𝑏 = 𝑡 ran 𝑏 = ran 𝑡)
6463sseq1d 4040 . . . . . 6 (𝑏 = 𝑡 → ( ran 𝑏𝐺 ran 𝑡𝐺))
6561, 64anbi12d 631 . . . . 5 (𝑏 = 𝑡 → ((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) ↔ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)))
66 fveq2 6920 . . . . . . 7 (𝑏 = 𝑡 → (𝑓𝑏) = (𝑓𝑡))
67 f1eq1 6812 . . . . . . 7 ((𝑓𝑏) = (𝑓𝑡) → ((𝑓𝑏):ω–1-1→V ↔ (𝑓𝑡):ω–1-1→V))
6866, 67syl 17 . . . . . 6 (𝑏 = 𝑡 → ((𝑓𝑏):ω–1-1→V ↔ (𝑓𝑡):ω–1-1→V))
6966rneqd 5963 . . . . . . . 8 (𝑏 = 𝑡 → ran (𝑓𝑏) = ran (𝑓𝑡))
7069unieqd 4944 . . . . . . 7 (𝑏 = 𝑡 ran (𝑓𝑏) = ran (𝑓𝑡))
7170, 63psseq12d 4120 . . . . . 6 (𝑏 = 𝑡 → ( ran (𝑓𝑏) ⊊ ran 𝑏 ran (𝑓𝑡) ⊊ ran 𝑡))
7268, 71anbi12d 631 . . . . 5 (𝑏 = 𝑡 → (((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏) ↔ ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7365, 72imbi12d 344 . . . 4 (𝑏 = 𝑡 → (((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡))))
7473cbvalvw 2035 . . 3 (∀𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7574exbii 1846 . 2 (∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7660, 75sylibr 234 1 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  wss 3976  wpss 3977  c0 4352  ifcif 4548  𝒫 cpw 4622   cuni 4931   cint 4970   class class class wbr 5166  cmpt 5249  ran crn 5701  ccom 5704  suc csuc 6397   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  ωcom 7903  seqωcseqom 8503  m cmap 8884  cen 9000  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008
This theorem is referenced by:  fin23lem33  10414
  Copyright terms: Public domain W3C validator