MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem32 Structured version   Visualization version   GIF version

Theorem fin23lem32 10341
Description: Lemma for fin23 10386. Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a π‘ˆ = seqΟ‰((𝑖 ∈ Ο‰, 𝑒 ∈ V ↦ if(((π‘‘β€˜π‘–) ∩ 𝑒) = βˆ…, 𝑒, ((π‘‘β€˜π‘–) ∩ 𝑒))), βˆͺ ran 𝑑)
fin23lem17.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
fin23lem.b 𝑃 = {𝑣 ∈ Ο‰ ∣ ∩ ran π‘ˆ βŠ† (π‘‘β€˜π‘£)}
fin23lem.c 𝑄 = (𝑀 ∈ Ο‰ ↦ (β„©π‘₯ ∈ 𝑃 (π‘₯ ∩ 𝑃) β‰ˆ 𝑀))
fin23lem.d 𝑅 = (𝑀 ∈ Ο‰ ↦ (β„©π‘₯ ∈ (Ο‰ βˆ– 𝑃)(π‘₯ ∩ (Ο‰ βˆ– 𝑃)) β‰ˆ 𝑀))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑑 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((π‘‘β€˜π‘§) βˆ– ∩ ran π‘ˆ)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem32 (𝐺 ∈ 𝐹 β†’ βˆƒπ‘“βˆ€π‘((𝑏:ω–1-1β†’V ∧ βˆͺ ran 𝑏 βŠ† 𝐺) β†’ ((π‘“β€˜π‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘) ⊊ βˆͺ ran 𝑏)))
Distinct variable groups:   𝑔,𝑖,𝑑,𝑒,𝑣,π‘₯,𝑧   π‘Ž,𝑏,𝑖,𝑒,𝑑   𝐹,π‘Ž,𝑑   𝑀,π‘Ž,π‘₯,𝑧,𝑃,𝑏   𝑣,π‘Ž,𝑅,𝑏,𝑖,𝑒   π‘ˆ,π‘Ž,𝑏,𝑖,𝑒,𝑣,𝑧   𝑓,π‘Ž,𝑍,𝑏   𝑔,π‘Ž,𝐺,𝑏,𝑑,𝑓,π‘₯
Allowed substitution hints:   𝑃(𝑣,𝑒,𝑑,𝑓,𝑔,𝑖)   𝑄(π‘₯,𝑧,𝑀,𝑣,𝑒,𝑑,𝑓,𝑔,𝑖,π‘Ž,𝑏)   𝑅(π‘₯,𝑧,𝑀,𝑑,𝑓,𝑔)   π‘ˆ(π‘₯,𝑀,𝑑,𝑓,𝑔)   𝐹(π‘₯,𝑧,𝑀,𝑣,𝑒,𝑓,𝑔,𝑖,𝑏)   𝐺(𝑧,𝑀,𝑣,𝑒,𝑖)   𝑍(π‘₯,𝑧,𝑀,𝑣,𝑒,𝑑,𝑔,𝑖)

Proof of Theorem fin23lem32
StepHypRef Expression
1 fin23lem.a . . . . . . . 8 π‘ˆ = seqΟ‰((𝑖 ∈ Ο‰, 𝑒 ∈ V ↦ if(((π‘‘β€˜π‘–) ∩ 𝑒) = βˆ…, 𝑒, ((π‘‘β€˜π‘–) ∩ 𝑒))), βˆͺ ran 𝑑)
2 fin23lem17.f . . . . . . . 8 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
3 fin23lem.b . . . . . . . 8 𝑃 = {𝑣 ∈ Ο‰ ∣ ∩ ran π‘ˆ βŠ† (π‘‘β€˜π‘£)}
4 fin23lem.c . . . . . . . 8 𝑄 = (𝑀 ∈ Ο‰ ↦ (β„©π‘₯ ∈ 𝑃 (π‘₯ ∩ 𝑃) β‰ˆ 𝑀))
5 fin23lem.d . . . . . . . 8 𝑅 = (𝑀 ∈ Ο‰ ↦ (β„©π‘₯ ∈ (Ο‰ βˆ– 𝑃)(π‘₯ ∩ (Ο‰ βˆ– 𝑃)) β‰ˆ 𝑀))
6 fin23lem.e . . . . . . . 8 𝑍 = if(𝑃 ∈ Fin, (𝑑 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((π‘‘β€˜π‘§) βˆ– ∩ ran π‘ˆ)) ∘ 𝑄))
71, 2, 3, 4, 5, 6fin23lem28 10337 . . . . . . 7 (𝑑:ω–1-1β†’V β†’ 𝑍:ω–1-1β†’V)
87ad2antrl 725 . . . . . 6 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝑍:ω–1-1β†’V)
9 simprl 768 . . . . . . 7 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝑑:ω–1-1β†’V)
10 simpl 482 . . . . . . 7 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝐺 ∈ 𝐹)
11 simprr 770 . . . . . . 7 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ βˆͺ ran 𝑑 βŠ† 𝐺)
121, 2, 3, 4, 5, 6fin23lem31 10340 . . . . . . 7 ((𝑑:ω–1-1β†’V ∧ 𝐺 ∈ 𝐹 ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ βˆͺ ran 𝑍 ⊊ βˆͺ ran 𝑑)
139, 10, 11, 12syl3anc 1368 . . . . . 6 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ βˆͺ ran 𝑍 ⊊ βˆͺ ran 𝑑)
14 f1fn 6782 . . . . . . . . . . . 12 (𝑑:ω–1-1β†’V β†’ 𝑑 Fn Ο‰)
15 dffn3 6724 . . . . . . . . . . . 12 (𝑑 Fn Ο‰ ↔ 𝑑:Ο‰βŸΆran 𝑑)
1614, 15sylib 217 . . . . . . . . . . 11 (𝑑:ω–1-1β†’V β†’ 𝑑:Ο‰βŸΆran 𝑑)
1716ad2antrl 725 . . . . . . . . . 10 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝑑:Ο‰βŸΆran 𝑑)
18 sspwuni 5096 . . . . . . . . . . . 12 (ran 𝑑 βŠ† 𝒫 𝐺 ↔ βˆͺ ran 𝑑 βŠ† 𝐺)
1918biimpri 227 . . . . . . . . . . 11 (βˆͺ ran 𝑑 βŠ† 𝐺 β†’ ran 𝑑 βŠ† 𝒫 𝐺)
2019ad2antll 726 . . . . . . . . . 10 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ ran 𝑑 βŠ† 𝒫 𝐺)
2117, 20fssd 6729 . . . . . . . . 9 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝑑:Ο‰βŸΆπ’« 𝐺)
22 pwexg 5369 . . . . . . . . . . 11 (𝐺 ∈ 𝐹 β†’ 𝒫 𝐺 ∈ V)
2322adantr 480 . . . . . . . . . 10 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝒫 𝐺 ∈ V)
24 vex 3472 . . . . . . . . . . . 12 𝑑 ∈ V
25 f1f 6781 . . . . . . . . . . . 12 (𝑑:ω–1-1β†’V β†’ 𝑑:Ο‰βŸΆV)
26 dmfex 7895 . . . . . . . . . . . 12 ((𝑑 ∈ V ∧ 𝑑:Ο‰βŸΆV) β†’ Ο‰ ∈ V)
2724, 25, 26sylancr 586 . . . . . . . . . . 11 (𝑑:ω–1-1β†’V β†’ Ο‰ ∈ V)
2827ad2antrl 725 . . . . . . . . . 10 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ Ο‰ ∈ V)
2923, 28elmapd 8836 . . . . . . . . 9 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↔ 𝑑:Ο‰βŸΆπ’« 𝐺))
3021, 29mpbird 257 . . . . . . . 8 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝑑 ∈ (𝒫 𝐺 ↑m Ο‰))
31 f1f 6781 . . . . . . . . . 10 (𝑍:ω–1-1β†’V β†’ 𝑍:Ο‰βŸΆV)
328, 31syl 17 . . . . . . . . 9 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝑍:Ο‰βŸΆV)
3332, 28fexd 7224 . . . . . . . 8 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ 𝑍 ∈ V)
34 eqid 2726 . . . . . . . . 9 (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)
3534fvmpt2 7003 . . . . . . . 8 ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ∧ 𝑍 ∈ V) β†’ ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = 𝑍)
3630, 33, 35syl2anc 583 . . . . . . 7 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = 𝑍)
37 f1eq1 6776 . . . . . . . 8 (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = 𝑍 β†’ (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ↔ 𝑍:ω–1-1β†’V))
38 rneq 5929 . . . . . . . . . 10 (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = 𝑍 β†’ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = ran 𝑍)
3938unieqd 4915 . . . . . . . . 9 (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = 𝑍 β†’ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = βˆͺ ran 𝑍)
4039psseq1d 4087 . . . . . . . 8 (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = 𝑍 β†’ (βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑 ↔ βˆͺ ran 𝑍 ⊊ βˆͺ ran 𝑑))
4137, 40anbi12d 630 . . . . . . 7 (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) = 𝑍 β†’ ((((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑) ↔ (𝑍:ω–1-1β†’V ∧ βˆͺ ran 𝑍 ⊊ βˆͺ ran 𝑑)))
4236, 41syl 17 . . . . . 6 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ ((((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑) ↔ (𝑍:ω–1-1β†’V ∧ βˆͺ ran 𝑍 ⊊ βˆͺ ran 𝑑)))
438, 13, 42mpbir2and 710 . . . . 5 ((𝐺 ∈ 𝐹 ∧ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)) β†’ (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑))
4443ex 412 . . . 4 (𝐺 ∈ 𝐹 β†’ ((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
4544alrimiv 1922 . . 3 (𝐺 ∈ 𝐹 β†’ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
46 ovex 7438 . . . . 5 (𝒫 𝐺 ↑m Ο‰) ∈ V
4746mptex 7220 . . . 4 (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) ∈ V
48 nfmpt1 5249 . . . . . 6 Ⅎ𝑑(𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)
4948nfeq2 2914 . . . . 5 Ⅎ𝑑 𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)
50 fveq1 6884 . . . . . . . 8 (𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) β†’ (π‘“β€˜π‘‘) = ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘))
51 f1eq1 6776 . . . . . . . 8 ((π‘“β€˜π‘‘) = ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ↔ ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V))
5250, 51syl 17 . . . . . . 7 (𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ↔ ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V))
5350rneqd 5931 . . . . . . . . 9 (𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) β†’ ran (π‘“β€˜π‘‘) = ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘))
5453unieqd 4915 . . . . . . . 8 (𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) β†’ βˆͺ ran (π‘“β€˜π‘‘) = βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘))
5554psseq1d 4087 . . . . . . 7 (𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) β†’ (βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑 ↔ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑))
5652, 55anbi12d 630 . . . . . 6 (𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) β†’ (((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑) ↔ (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
5756imbi2d 340 . . . . 5 (𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) β†’ (((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) ↔ ((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑))))
5849, 57albid 2207 . . . 4 (𝑓 = (𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍) β†’ (βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) ↔ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑))))
5947, 58spcev 3590 . . 3 (βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ (((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran ((𝑑 ∈ (𝒫 𝐺 ↑m Ο‰) ↦ 𝑍)β€˜π‘‘) ⊊ βˆͺ ran 𝑑)) β†’ βˆƒπ‘“βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
6045, 59syl 17 . 2 (𝐺 ∈ 𝐹 β†’ βˆƒπ‘“βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
61 f1eq1 6776 . . . . . 6 (𝑏 = 𝑑 β†’ (𝑏:ω–1-1β†’V ↔ 𝑑:ω–1-1β†’V))
62 rneq 5929 . . . . . . . 8 (𝑏 = 𝑑 β†’ ran 𝑏 = ran 𝑑)
6362unieqd 4915 . . . . . . 7 (𝑏 = 𝑑 β†’ βˆͺ ran 𝑏 = βˆͺ ran 𝑑)
6463sseq1d 4008 . . . . . 6 (𝑏 = 𝑑 β†’ (βˆͺ ran 𝑏 βŠ† 𝐺 ↔ βˆͺ ran 𝑑 βŠ† 𝐺))
6561, 64anbi12d 630 . . . . 5 (𝑏 = 𝑑 β†’ ((𝑏:ω–1-1β†’V ∧ βˆͺ ran 𝑏 βŠ† 𝐺) ↔ (𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺)))
66 fveq2 6885 . . . . . . 7 (𝑏 = 𝑑 β†’ (π‘“β€˜π‘) = (π‘“β€˜π‘‘))
67 f1eq1 6776 . . . . . . 7 ((π‘“β€˜π‘) = (π‘“β€˜π‘‘) β†’ ((π‘“β€˜π‘):ω–1-1β†’V ↔ (π‘“β€˜π‘‘):ω–1-1β†’V))
6866, 67syl 17 . . . . . 6 (𝑏 = 𝑑 β†’ ((π‘“β€˜π‘):ω–1-1β†’V ↔ (π‘“β€˜π‘‘):ω–1-1β†’V))
6966rneqd 5931 . . . . . . . 8 (𝑏 = 𝑑 β†’ ran (π‘“β€˜π‘) = ran (π‘“β€˜π‘‘))
7069unieqd 4915 . . . . . . 7 (𝑏 = 𝑑 β†’ βˆͺ ran (π‘“β€˜π‘) = βˆͺ ran (π‘“β€˜π‘‘))
7170, 63psseq12d 4089 . . . . . 6 (𝑏 = 𝑑 β†’ (βˆͺ ran (π‘“β€˜π‘) ⊊ βˆͺ ran 𝑏 ↔ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑))
7268, 71anbi12d 630 . . . . 5 (𝑏 = 𝑑 β†’ (((π‘“β€˜π‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘) ⊊ βˆͺ ran 𝑏) ↔ ((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
7365, 72imbi12d 344 . . . 4 (𝑏 = 𝑑 β†’ (((𝑏:ω–1-1β†’V ∧ βˆͺ ran 𝑏 βŠ† 𝐺) β†’ ((π‘“β€˜π‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘) ⊊ βˆͺ ran 𝑏)) ↔ ((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑))))
7473cbvalvw 2031 . . 3 (βˆ€π‘((𝑏:ω–1-1β†’V ∧ βˆͺ ran 𝑏 βŠ† 𝐺) β†’ ((π‘“β€˜π‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘) ⊊ βˆͺ ran 𝑏)) ↔ βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
7574exbii 1842 . 2 (βˆƒπ‘“βˆ€π‘((𝑏:ω–1-1β†’V ∧ βˆͺ ran 𝑏 βŠ† 𝐺) β†’ ((π‘“β€˜π‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘) ⊊ βˆͺ ran 𝑏)) ↔ βˆƒπ‘“βˆ€π‘‘((𝑑:ω–1-1β†’V ∧ βˆͺ ran 𝑑 βŠ† 𝐺) β†’ ((π‘“β€˜π‘‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘‘) ⊊ βˆͺ ran 𝑑)))
7660, 75sylibr 233 1 (𝐺 ∈ 𝐹 β†’ βˆƒπ‘“βˆ€π‘((𝑏:ω–1-1β†’V ∧ βˆͺ ran 𝑏 βŠ† 𝐺) β†’ ((π‘“β€˜π‘):ω–1-1β†’V ∧ βˆͺ ran (π‘“β€˜π‘) ⊊ βˆͺ ran 𝑏)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395  βˆ€wal 1531   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2703  βˆ€wral 3055  {crab 3426  Vcvv 3468   βˆ– cdif 3940   ∩ cin 3942   βŠ† wss 3943   ⊊ wpss 3944  βˆ…c0 4317  ifcif 4523  π’« cpw 4597  βˆͺ cuni 4902  βˆ© cint 4943   class class class wbr 5141   ↦ cmpt 5224  ran crn 5670   ∘ ccom 5673  suc csuc 6360   Fn wfn 6532  βŸΆwf 6533  β€“1-1β†’wf1 6534  β€˜cfv 6537  β„©crio 7360  (class class class)co 7405   ∈ cmpo 7407  Ο‰com 7852  seqΟ‰cseqom 8448   ↑m cmap 8822   β‰ˆ cen 8938  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-seqom 8449  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936
This theorem is referenced by:  fin23lem33  10342
  Copyright terms: Public domain W3C validator