MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem32 Structured version   Visualization version   GIF version

Theorem fin23lem32 9844
Description: Lemma for fin23 9889. Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem32 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧   𝑎,𝑏,𝑖,𝑢,𝑡   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃,𝑏   𝑣,𝑎,𝑅,𝑏,𝑖,𝑢   𝑈,𝑎,𝑏,𝑖,𝑢,𝑣,𝑧   𝑓,𝑎,𝑍,𝑏   𝑔,𝑎,𝐺,𝑏,𝑡,𝑓,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑓,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,𝑖,𝑎,𝑏)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑓,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑖,𝑏)   𝐺(𝑧,𝑤,𝑣,𝑢,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem32
StepHypRef Expression
1 fin23lem.a . . . . . . . 8 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
2 fin23lem17.f . . . . . . . 8 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
3 fin23lem.b . . . . . . . 8 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
4 fin23lem.c . . . . . . . 8 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
5 fin23lem.d . . . . . . . 8 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
6 fin23lem.e . . . . . . . 8 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
71, 2, 3, 4, 5, 6fin23lem28 9840 . . . . . . 7 (𝑡:ω–1-1→V → 𝑍:ω–1-1→V)
87ad2antrl 728 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍:ω–1-1→V)
9 simprl 771 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω–1-1→V)
10 simpl 486 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝐺𝐹)
11 simprr 773 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑡𝐺)
121, 2, 3, 4, 5, 6fin23lem31 9843 . . . . . . 7 ((𝑡:ω–1-1→V ∧ 𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
139, 10, 11, 12syl3anc 1372 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑍 ran 𝑡)
14 f1fn 6575 . . . . . . . . . . . 12 (𝑡:ω–1-1→V → 𝑡 Fn ω)
15 dffn3 6517 . . . . . . . . . . . 12 (𝑡 Fn ω ↔ 𝑡:ω⟶ran 𝑡)
1614, 15sylib 221 . . . . . . . . . . 11 (𝑡:ω–1-1→V → 𝑡:ω⟶ran 𝑡)
1716ad2antrl 728 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω⟶ran 𝑡)
18 sspwuni 4985 . . . . . . . . . . . 12 (ran 𝑡 ⊆ 𝒫 𝐺 ran 𝑡𝐺)
1918biimpri 231 . . . . . . . . . . 11 ( ran 𝑡𝐺 → ran 𝑡 ⊆ 𝒫 𝐺)
2019ad2antll 729 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ran 𝑡 ⊆ 𝒫 𝐺)
2117, 20fssd 6522 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡:ω⟶𝒫 𝐺)
22 pwexg 5245 . . . . . . . . . . 11 (𝐺𝐹 → 𝒫 𝐺 ∈ V)
2322adantr 484 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝒫 𝐺 ∈ V)
24 vex 3402 . . . . . . . . . . . 12 𝑡 ∈ V
25 f1f 6574 . . . . . . . . . . . 12 (𝑡:ω–1-1→V → 𝑡:ω⟶V)
26 dmfex 7638 . . . . . . . . . . . 12 ((𝑡 ∈ V ∧ 𝑡:ω⟶V) → ω ∈ V)
2724, 25, 26sylancr 590 . . . . . . . . . . 11 (𝑡:ω–1-1→V → ω ∈ V)
2827ad2antrl 728 . . . . . . . . . 10 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ω ∈ V)
2923, 28elmapd 8451 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → (𝑡 ∈ (𝒫 𝐺m ω) ↔ 𝑡:ω⟶𝒫 𝐺))
3021, 29mpbird 260 . . . . . . . 8 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑡 ∈ (𝒫 𝐺m ω))
31 f1f 6574 . . . . . . . . . 10 (𝑍:ω–1-1→V → 𝑍:ω⟶V)
328, 31syl 17 . . . . . . . . 9 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍:ω⟶V)
3332, 28fexd 7000 . . . . . . . 8 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → 𝑍 ∈ V)
34 eqid 2738 . . . . . . . . 9 (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
3534fvmpt2 6786 . . . . . . . 8 ((𝑡 ∈ (𝒫 𝐺m ω) ∧ 𝑍 ∈ V) → ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍)
3630, 33, 35syl2anc 587 . . . . . . 7 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍)
37 f1eq1 6569 . . . . . . . 8 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ↔ 𝑍:ω–1-1→V))
38 rneq 5779 . . . . . . . . . 10 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = ran 𝑍)
3938unieqd 4810 . . . . . . . . 9 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = ran 𝑍)
4039psseq1d 3983 . . . . . . . 8 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ( ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡 ran 𝑍 ran 𝑡))
4137, 40anbi12d 634 . . . . . . 7 (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) = 𝑍 → ((((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡) ↔ (𝑍:ω–1-1→V ∧ ran 𝑍 ran 𝑡)))
4236, 41syl 17 . . . . . 6 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → ((((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡) ↔ (𝑍:ω–1-1→V ∧ ran 𝑍 ran 𝑡)))
438, 13, 42mpbir2and 713 . . . . 5 ((𝐺𝐹 ∧ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))
4443ex 416 . . . 4 (𝐺𝐹 → ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
4544alrimiv 1934 . . 3 (𝐺𝐹 → ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
46 ovex 7203 . . . . 5 (𝒫 𝐺m ω) ∈ V
4746mptex 6996 . . . 4 (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) ∈ V
48 nfmpt1 5128 . . . . . 6 𝑡(𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
4948nfeq2 2916 . . . . 5 𝑡 𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)
50 fveq1 6673 . . . . . . . 8 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (𝑓𝑡) = ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
51 f1eq1 6569 . . . . . . . 8 ((𝑓𝑡) = ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) → ((𝑓𝑡):ω–1-1→V ↔ ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V))
5250, 51syl 17 . . . . . . 7 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ((𝑓𝑡):ω–1-1→V ↔ ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V))
5350rneqd 5781 . . . . . . . . 9 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ran (𝑓𝑡) = ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
5453unieqd 4810 . . . . . . . 8 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ran (𝑓𝑡) = ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡))
5554psseq1d 3983 . . . . . . 7 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → ( ran (𝑓𝑡) ⊊ ran 𝑡 ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))
5652, 55anbi12d 634 . . . . . 6 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡) ↔ (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)))
5756imbi2d 344 . . . . 5 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)) ↔ ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))))
5849, 57albid 2224 . . . 4 (𝑓 = (𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍) → (∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)) ↔ ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡))))
5947, 58spcev 3510 . . 3 (∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → (((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡):ω–1-1→V ∧ ran ((𝑡 ∈ (𝒫 𝐺m ω) ↦ 𝑍)‘𝑡) ⊊ ran 𝑡)) → ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
6045, 59syl 17 . 2 (𝐺𝐹 → ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
61 f1eq1 6569 . . . . . 6 (𝑏 = 𝑡 → (𝑏:ω–1-1→V ↔ 𝑡:ω–1-1→V))
62 rneq 5779 . . . . . . . 8 (𝑏 = 𝑡 → ran 𝑏 = ran 𝑡)
6362unieqd 4810 . . . . . . 7 (𝑏 = 𝑡 ran 𝑏 = ran 𝑡)
6463sseq1d 3908 . . . . . 6 (𝑏 = 𝑡 → ( ran 𝑏𝐺 ran 𝑡𝐺))
6561, 64anbi12d 634 . . . . 5 (𝑏 = 𝑡 → ((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) ↔ (𝑡:ω–1-1→V ∧ ran 𝑡𝐺)))
66 fveq2 6674 . . . . . . 7 (𝑏 = 𝑡 → (𝑓𝑏) = (𝑓𝑡))
67 f1eq1 6569 . . . . . . 7 ((𝑓𝑏) = (𝑓𝑡) → ((𝑓𝑏):ω–1-1→V ↔ (𝑓𝑡):ω–1-1→V))
6866, 67syl 17 . . . . . 6 (𝑏 = 𝑡 → ((𝑓𝑏):ω–1-1→V ↔ (𝑓𝑡):ω–1-1→V))
6966rneqd 5781 . . . . . . . 8 (𝑏 = 𝑡 → ran (𝑓𝑏) = ran (𝑓𝑡))
7069unieqd 4810 . . . . . . 7 (𝑏 = 𝑡 ran (𝑓𝑏) = ran (𝑓𝑡))
7170, 63psseq12d 3985 . . . . . 6 (𝑏 = 𝑡 → ( ran (𝑓𝑏) ⊊ ran 𝑏 ran (𝑓𝑡) ⊊ ran 𝑡))
7268, 71anbi12d 634 . . . . 5 (𝑏 = 𝑡 → (((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏) ↔ ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7365, 72imbi12d 348 . . . 4 (𝑏 = 𝑡 → (((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡))))
7473cbvalvw 2048 . . 3 (∀𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ∀𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7574exbii 1854 . 2 (∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)) ↔ ∃𝑓𝑡((𝑡:ω–1-1→V ∧ ran 𝑡𝐺) → ((𝑓𝑡):ω–1-1→V ∧ ran (𝑓𝑡) ⊊ ran 𝑡)))
7660, 75sylibr 237 1 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1540   = wceq 1542  wex 1786  wcel 2114  {cab 2716  wral 3053  {crab 3057  Vcvv 3398  cdif 3840  cin 3842  wss 3843  wpss 3844  c0 4211  ifcif 4414  𝒫 cpw 4488   cuni 4796   cint 4836   class class class wbr 5030  cmpt 5110  ran crn 5526  ccom 5529  suc csuc 6174   Fn wfn 6334  wf 6335  1-1wf1 6336  cfv 6339  crio 7126  (class class class)co 7170  cmpo 7172  ωcom 7599  seqωcseqom 8112  m cmap 8437  cen 8552  Fincfn 8555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-seqom 8113  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-card 9441
This theorem is referenced by:  fin23lem33  9845
  Copyright terms: Public domain W3C validator