MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs3 Structured version   Visualization version   GIF version

Theorem islbs3 21157
Description: An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Base‘𝑊)
islbs2.j 𝐽 = (LBasis‘𝑊)
islbs2.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs3 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
Distinct variable groups:   𝐵,𝑠   𝑁,𝑠   𝑉,𝑠   𝑊,𝑠   𝐽,𝑠

Proof of Theorem islbs3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Base‘𝑊)
2 islbs2.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2lbsss 21076 . . . 4 (𝐵𝐽𝐵𝑉)
43adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → 𝐵𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
61, 2, 5lbssp 21078 . . . 4 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
76adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑁𝐵) = 𝑉)
8 lveclmod 21105 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
983ad2ant1 1134 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → 𝑊 ∈ LMod)
10 pssss 4098 . . . . . . . . 9 (𝑠𝐵𝑠𝐵)
1110, 3sylan9ssr 3998 . . . . . . . 8 ((𝐵𝐽𝑠𝐵) → 𝑠𝑉)
12113adant1 1131 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → 𝑠𝑉)
131, 5lspssv 20981 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → (𝑁𝑠) ⊆ 𝑉)
149, 12, 13syl2anc 584 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ⊆ 𝑉)
15 eqid 2737 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
1615lvecdrng 21104 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
17 eqid 2737 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
18 eqid 2737 . . . . . . . . . 10 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1917, 18drngunz 20747 . . . . . . . . 9 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
2016, 19syl 17 . . . . . . . 8 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
218, 20jca 511 . . . . . . 7 (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
222, 5, 15, 18, 17, 1lbspss 21081 . . . . . . 7 (((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ≠ 𝑉)
2321, 22syl3an1 1164 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ≠ 𝑉)
24 df-pss 3971 . . . . . 6 ((𝑁𝑠) ⊊ 𝑉 ↔ ((𝑁𝑠) ⊆ 𝑉 ∧ (𝑁𝑠) ≠ 𝑉))
2514, 23, 24sylanbrc 583 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ⊊ 𝑉)
26253expia 1122 . . . 4 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
2726alrimiv 1927 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
284, 7, 273jca 1129 . 2 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉)))
29 simpr1 1195 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → 𝐵𝑉)
30 simpr2 1196 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → (𝑁𝐵) = 𝑉)
31 simplr1 1216 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝐵𝑉)
3231ssdifssd 4147 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
331fvexi 6920 . . . . . . . 8 𝑉 ∈ V
34 ssexg 5323 . . . . . . . 8 (((𝐵 ∖ {𝑥}) ⊆ 𝑉𝑉 ∈ V) → (𝐵 ∖ {𝑥}) ∈ V)
3532, 33, 34sylancl 586 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ∈ V)
36 simplr3 1218 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
37 difssd 4137 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝐵)
38 simpr 484 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝑥𝐵)
39 neldifsn 4792 . . . . . . . . . 10 ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})
40 nelne1 3039 . . . . . . . . . 10 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})) → 𝐵 ≠ (𝐵 ∖ {𝑥}))
4138, 39, 40sylancl 586 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝐵 ≠ (𝐵 ∖ {𝑥}))
4241necomd 2996 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ≠ 𝐵)
43 df-pss 3971 . . . . . . . 8 ((𝐵 ∖ {𝑥}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝑥}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝑥}) ≠ 𝐵))
4437, 42, 43sylanbrc 583 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊊ 𝐵)
45 psseq1 4090 . . . . . . . . 9 (𝑠 = (𝐵 ∖ {𝑥}) → (𝑠𝐵 ↔ (𝐵 ∖ {𝑥}) ⊊ 𝐵))
46 fveq2 6906 . . . . . . . . . 10 (𝑠 = (𝐵 ∖ {𝑥}) → (𝑁𝑠) = (𝑁‘(𝐵 ∖ {𝑥})))
4746psseq1d 4095 . . . . . . . . 9 (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑁𝑠) ⊊ 𝑉 ↔ (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉))
4845, 47imbi12d 344 . . . . . . . 8 (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉) ↔ ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)))
4948spcgv 3596 . . . . . . 7 ((𝐵 ∖ {𝑥}) ∈ V → (∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉) → ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)))
5035, 36, 44, 49syl3c 66 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)
51 dfpss3 4089 . . . . . . 7 ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 ↔ ((𝑁‘(𝐵 ∖ {𝑥})) ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))))
5251simprbi 496 . . . . . 6 ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
5350, 52syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
54 simplr2 1217 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) = 𝑉)
558ad2antrr 726 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod)
5632adantrr 717 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
57 eqid 2737 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
581, 57, 5lspcl 20974 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊))
5955, 56, 58syl2anc 584 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊))
60 ssun1 4178 . . . . . . . . . 10 𝐵 ⊆ (𝐵 ∪ {𝑥})
61 undif1 4476 . . . . . . . . . 10 ((𝐵 ∖ {𝑥}) ∪ {𝑥}) = (𝐵 ∪ {𝑥})
6260, 61sseqtrri 4033 . . . . . . . . 9 𝐵 ⊆ ((𝐵 ∖ {𝑥}) ∪ {𝑥})
631, 5lspssid 20983 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6455, 56, 63syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
65 simprr 773 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
6665snssd 4809 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → {𝑥} ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6764, 66unssd 4192 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ((𝐵 ∖ {𝑥}) ∪ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6862, 67sstrid 3995 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6957, 5lspssp 20986 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊) ∧ 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) → (𝑁𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7055, 59, 68, 69syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7154, 70eqsstrrd 4019 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7271expr 456 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))))
7353, 72mtod 198 . . . 4 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
7473ralrimiva 3146 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
751, 2, 5islbs2 21156 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
7675adantr 480 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
7729, 30, 74, 76mpbir3and 1343 . 2 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → 𝐵𝐽)
7828, 77impbida 801 1 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  cun 3949  wss 3951  wpss 3952  {csn 4626  cfv 6561  Basecbs 17247  Scalarcsca 17300  0gc0g 17484  1rcur 20178  DivRingcdr 20729  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969  LBasisclbs 21073  LVecclvec 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lbs 21074  df-lvec 21102
This theorem is referenced by:  obslbs  21750  exsslsb  33647
  Copyright terms: Public domain W3C validator