MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs3 Structured version   Visualization version   GIF version

Theorem islbs3 21102
Description: An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Base‘𝑊)
islbs2.j 𝐽 = (LBasis‘𝑊)
islbs2.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs3 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
Distinct variable groups:   𝐵,𝑠   𝑁,𝑠   𝑉,𝑠   𝑊,𝑠   𝐽,𝑠

Proof of Theorem islbs3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Base‘𝑊)
2 islbs2.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2lbsss 21021 . . . 4 (𝐵𝐽𝐵𝑉)
43adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → 𝐵𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
61, 2, 5lbssp 21023 . . . 4 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
76adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑁𝐵) = 𝑉)
8 lveclmod 21050 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
983ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → 𝑊 ∈ LMod)
10 pssss 4049 . . . . . . . . 9 (𝑠𝐵𝑠𝐵)
1110, 3sylan9ssr 3946 . . . . . . . 8 ((𝐵𝐽𝑠𝐵) → 𝑠𝑉)
12113adant1 1130 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → 𝑠𝑉)
131, 5lspssv 20926 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → (𝑁𝑠) ⊆ 𝑉)
149, 12, 13syl2anc 584 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ⊆ 𝑉)
15 eqid 2733 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
1615lvecdrng 21049 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
17 eqid 2733 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
18 eqid 2733 . . . . . . . . . 10 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1917, 18drngunz 20672 . . . . . . . . 9 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
2016, 19syl 17 . . . . . . . 8 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
218, 20jca 511 . . . . . . 7 (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
222, 5, 15, 18, 17, 1lbspss 21026 . . . . . . 7 (((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ≠ 𝑉)
2321, 22syl3an1 1163 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ≠ 𝑉)
24 df-pss 3919 . . . . . 6 ((𝑁𝑠) ⊊ 𝑉 ↔ ((𝑁𝑠) ⊆ 𝑉 ∧ (𝑁𝑠) ≠ 𝑉))
2514, 23, 24sylanbrc 583 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ⊊ 𝑉)
26253expia 1121 . . . 4 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
2726alrimiv 1928 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
284, 7, 273jca 1128 . 2 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉)))
29 simpr1 1195 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → 𝐵𝑉)
30 simpr2 1196 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → (𝑁𝐵) = 𝑉)
31 simplr1 1216 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝐵𝑉)
3231ssdifssd 4098 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
331fvexi 6845 . . . . . . . 8 𝑉 ∈ V
34 ssexg 5265 . . . . . . . 8 (((𝐵 ∖ {𝑥}) ⊆ 𝑉𝑉 ∈ V) → (𝐵 ∖ {𝑥}) ∈ V)
3532, 33, 34sylancl 586 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ∈ V)
36 simplr3 1218 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
37 difssd 4088 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝐵)
38 simpr 484 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝑥𝐵)
39 neldifsn 4745 . . . . . . . . . 10 ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})
40 nelne1 3027 . . . . . . . . . 10 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})) → 𝐵 ≠ (𝐵 ∖ {𝑥}))
4138, 39, 40sylancl 586 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝐵 ≠ (𝐵 ∖ {𝑥}))
4241necomd 2985 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ≠ 𝐵)
43 df-pss 3919 . . . . . . . 8 ((𝐵 ∖ {𝑥}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝑥}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝑥}) ≠ 𝐵))
4437, 42, 43sylanbrc 583 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊊ 𝐵)
45 psseq1 4041 . . . . . . . . 9 (𝑠 = (𝐵 ∖ {𝑥}) → (𝑠𝐵 ↔ (𝐵 ∖ {𝑥}) ⊊ 𝐵))
46 fveq2 6831 . . . . . . . . . 10 (𝑠 = (𝐵 ∖ {𝑥}) → (𝑁𝑠) = (𝑁‘(𝐵 ∖ {𝑥})))
4746psseq1d 4046 . . . . . . . . 9 (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑁𝑠) ⊊ 𝑉 ↔ (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉))
4845, 47imbi12d 344 . . . . . . . 8 (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉) ↔ ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)))
4948spcgv 3548 . . . . . . 7 ((𝐵 ∖ {𝑥}) ∈ V → (∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉) → ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)))
5035, 36, 44, 49syl3c 66 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)
51 dfpss3 4040 . . . . . . 7 ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 ↔ ((𝑁‘(𝐵 ∖ {𝑥})) ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))))
5251simprbi 496 . . . . . 6 ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
5350, 52syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
54 simplr2 1217 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) = 𝑉)
558ad2antrr 726 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod)
5632adantrr 717 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
57 eqid 2733 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
581, 57, 5lspcl 20919 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊))
5955, 56, 58syl2anc 584 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊))
60 ssun1 4129 . . . . . . . . . 10 𝐵 ⊆ (𝐵 ∪ {𝑥})
61 undif1 4427 . . . . . . . . . 10 ((𝐵 ∖ {𝑥}) ∪ {𝑥}) = (𝐵 ∪ {𝑥})
6260, 61sseqtrri 3981 . . . . . . . . 9 𝐵 ⊆ ((𝐵 ∖ {𝑥}) ∪ {𝑥})
631, 5lspssid 20928 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6455, 56, 63syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
65 simprr 772 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
6665snssd 4762 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → {𝑥} ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6764, 66unssd 4143 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ((𝐵 ∖ {𝑥}) ∪ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6862, 67sstrid 3943 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6957, 5lspssp 20931 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊) ∧ 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) → (𝑁𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7055, 59, 68, 69syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7154, 70eqsstrrd 3967 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7271expr 456 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))))
7353, 72mtod 198 . . . 4 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
7473ralrimiva 3126 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
751, 2, 5islbs2 21101 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
7675adantr 480 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
7729, 30, 74, 76mpbir3and 1343 . 2 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → 𝐵𝐽)
7828, 77impbida 800 1 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2113  wne 2930  wral 3049  Vcvv 3438  cdif 3896  cun 3897  wss 3899  wpss 3900  {csn 4577  cfv 6489  Basecbs 17130  Scalarcsca 17174  0gc0g 17353  1rcur 20109  DivRingcdr 20654  LModclmod 20803  LSubSpclss 20874  LSpanclspn 20914  LBasisclbs 21018  LVecclvec 21046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-sbg 18861  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-drng 20656  df-lmod 20805  df-lss 20875  df-lsp 20915  df-lbs 21019  df-lvec 21047
This theorem is referenced by:  obslbs  21677  exsslsb  33620
  Copyright terms: Public domain W3C validator