| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | islbs2.v | . . . . 5
⊢ 𝑉 = (Base‘𝑊) | 
| 2 |  | islbs2.j | . . . . 5
⊢ 𝐽 = (LBasis‘𝑊) | 
| 3 | 1, 2 | lbsss 21076 | . . . 4
⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) | 
| 4 | 3 | adantl 481 | . . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → 𝐵 ⊆ 𝑉) | 
| 5 |  | islbs2.n | . . . . 5
⊢ 𝑁 = (LSpan‘𝑊) | 
| 6 | 1, 2, 5 | lbssp 21078 | . . . 4
⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) | 
| 7 | 6 | adantl 481 | . . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → (𝑁‘𝐵) = 𝑉) | 
| 8 |  | lveclmod 21105 | . . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | 
| 9 | 8 | 3ad2ant1 1134 | . . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → 𝑊 ∈ LMod) | 
| 10 |  | pssss 4098 | . . . . . . . . 9
⊢ (𝑠 ⊊ 𝐵 → 𝑠 ⊆ 𝐵) | 
| 11 | 10, 3 | sylan9ssr 3998 | . . . . . . . 8
⊢ ((𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → 𝑠 ⊆ 𝑉) | 
| 12 | 11 | 3adant1 1131 | . . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → 𝑠 ⊆ 𝑉) | 
| 13 | 1, 5 | lspssv 20981 | . . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑠 ⊆ 𝑉) → (𝑁‘𝑠) ⊆ 𝑉) | 
| 14 | 9, 12, 13 | syl2anc 584 | . . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → (𝑁‘𝑠) ⊆ 𝑉) | 
| 15 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) | 
| 16 | 15 | lvecdrng 21104 | . . . . . . . . 9
⊢ (𝑊 ∈ LVec →
(Scalar‘𝑊) ∈
DivRing) | 
| 17 |  | eqid 2737 | . . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) | 
| 18 |  | eqid 2737 | . . . . . . . . . 10
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) | 
| 19 | 17, 18 | drngunz 20747 | . . . . . . . . 9
⊢
((Scalar‘𝑊)
∈ DivRing → (1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) | 
| 20 | 16, 19 | syl 17 | . . . . . . . 8
⊢ (𝑊 ∈ LVec →
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) | 
| 21 | 8, 20 | jca 511 | . . . . . . 7
⊢ (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊)))) | 
| 22 | 2, 5, 15, 18, 17, 1 | lbspss 21081 | . . . . . . 7
⊢ (((𝑊 ∈ LMod ∧
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → (𝑁‘𝑠) ≠ 𝑉) | 
| 23 | 21, 22 | syl3an1 1164 | . . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → (𝑁‘𝑠) ≠ 𝑉) | 
| 24 |  | df-pss 3971 | . . . . . 6
⊢ ((𝑁‘𝑠) ⊊ 𝑉 ↔ ((𝑁‘𝑠) ⊆ 𝑉 ∧ (𝑁‘𝑠) ≠ 𝑉)) | 
| 25 | 14, 23, 24 | sylanbrc 583 | . . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → (𝑁‘𝑠) ⊊ 𝑉) | 
| 26 | 25 | 3expia 1122 | . . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → (𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)) | 
| 27 | 26 | alrimiv 1927 | . . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)) | 
| 28 | 4, 7, 27 | 3jca 1129 | . 2
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) | 
| 29 |  | simpr1 1195 | . . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → 𝐵 ⊆ 𝑉) | 
| 30 |  | simpr2 1196 | . . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → (𝑁‘𝐵) = 𝑉) | 
| 31 |  | simplr1 1216 | . . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → 𝐵 ⊆ 𝑉) | 
| 32 | 31 | ssdifssd 4147 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝑉) | 
| 33 | 1 | fvexi 6920 | . . . . . . . 8
⊢ 𝑉 ∈ V | 
| 34 |  | ssexg 5323 | . . . . . . . 8
⊢ (((𝐵 ∖ {𝑥}) ⊆ 𝑉 ∧ 𝑉 ∈ V) → (𝐵 ∖ {𝑥}) ∈ V) | 
| 35 | 32, 33, 34 | sylancl 586 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ∈ V) | 
| 36 |  | simplr3 1218 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)) | 
| 37 |  | difssd 4137 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝐵) | 
| 38 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 39 |  | neldifsn 4792 | . . . . . . . . . 10
⊢  ¬
𝑥 ∈ (𝐵 ∖ {𝑥}) | 
| 40 |  | nelne1 3039 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})) → 𝐵 ≠ (𝐵 ∖ {𝑥})) | 
| 41 | 38, 39, 40 | sylancl 586 | . . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → 𝐵 ≠ (𝐵 ∖ {𝑥})) | 
| 42 | 41 | necomd 2996 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ≠ 𝐵) | 
| 43 |  | df-pss 3971 | . . . . . . . 8
⊢ ((𝐵 ∖ {𝑥}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝑥}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝑥}) ≠ 𝐵)) | 
| 44 | 37, 42, 43 | sylanbrc 583 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ⊊ 𝐵) | 
| 45 |  | psseq1 4090 | . . . . . . . . 9
⊢ (𝑠 = (𝐵 ∖ {𝑥}) → (𝑠 ⊊ 𝐵 ↔ (𝐵 ∖ {𝑥}) ⊊ 𝐵)) | 
| 46 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑠 = (𝐵 ∖ {𝑥}) → (𝑁‘𝑠) = (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 47 | 46 | psseq1d 4095 | . . . . . . . . 9
⊢ (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑁‘𝑠) ⊊ 𝑉 ↔ (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)) | 
| 48 | 45, 47 | imbi12d 344 | . . . . . . . 8
⊢ (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉) ↔ ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉))) | 
| 49 | 48 | spcgv 3596 | . . . . . . 7
⊢ ((𝐵 ∖ {𝑥}) ∈ V → (∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉) → ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉))) | 
| 50 | 35, 36, 44, 49 | syl3c 66 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉) | 
| 51 |  | dfpss3 4089 | . . . . . . 7
⊢ ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 ↔ ((𝑁‘(𝐵 ∖ {𝑥})) ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))) | 
| 52 | 51 | simprbi 496 | . . . . . 6
⊢ ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 53 | 50, 52 | syl 17 | . . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 54 |  | simplr2 1217 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘𝐵) = 𝑉) | 
| 55 | 8 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod) | 
| 56 | 32 | adantrr 717 | . . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ 𝑉) | 
| 57 |  | eqid 2737 | . . . . . . . . . 10
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) | 
| 58 | 1, 57, 5 | lspcl 20974 | . . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊)) | 
| 59 | 55, 56, 58 | syl2anc 584 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊)) | 
| 60 |  | ssun1 4178 | . . . . . . . . . 10
⊢ 𝐵 ⊆ (𝐵 ∪ {𝑥}) | 
| 61 |  | undif1 4476 | . . . . . . . . . 10
⊢ ((𝐵 ∖ {𝑥}) ∪ {𝑥}) = (𝐵 ∪ {𝑥}) | 
| 62 | 60, 61 | sseqtrri 4033 | . . . . . . . . 9
⊢ 𝐵 ⊆ ((𝐵 ∖ {𝑥}) ∪ {𝑥}) | 
| 63 | 1, 5 | lspssid 20983 | . . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 64 | 55, 56, 63 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 65 |  | simprr 773 | . . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 66 | 65 | snssd 4809 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → {𝑥} ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 67 | 64, 66 | unssd 4192 | . . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ((𝐵 ∖ {𝑥}) ∪ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 68 | 62, 67 | sstrid 3995 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 69 | 57, 5 | lspssp 20986 | . . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊) ∧ 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) → (𝑁‘𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 70 | 55, 59, 68, 69 | syl3anc 1373 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 71 | 54, 70 | eqsstrrd 4019 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 72 | 71 | expr 456 | . . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))) | 
| 73 | 53, 72 | mtod 198 | . . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 74 | 73 | ralrimiva 3146 | . . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))) | 
| 75 | 1, 2, 5 | islbs2 21156 | . . . 4
⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) | 
| 76 | 75 | adantr 480 | . . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) | 
| 77 | 29, 30, 74, 76 | mpbir3and 1343 | . 2
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → 𝐵 ∈ 𝐽) | 
| 78 | 28, 77 | impbida 801 | 1
⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)))) |