Step | Hyp | Ref
| Expression |
1 | | isfi 8764 |
. . 3
⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
2 | | bren 8743 |
. . . . . 6
⊢ (𝐴 ≈ 𝑥 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑥) |
3 | | pssss 4030 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴) |
4 | | imass2 6010 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ⊆ 𝐴 → (𝑓 “ 𝐵) ⊆ (𝑓 “ 𝐴)) |
5 | 3, 4 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐵 ⊊ 𝐴 → (𝑓 “ 𝐵) ⊆ (𝑓 “ 𝐴)) |
6 | 5 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑓 “ 𝐵) ⊆ (𝑓 “ 𝐴)) |
7 | | pssnel 4404 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ⊊ 𝐴 → ∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) |
8 | | eldif 3897 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) |
9 | | f1ofn 6717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:𝐴–1-1-onto→𝑥 → 𝑓 Fn 𝐴) |
10 | | difss 4066 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
11 | | fnfvima 7109 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 Fn 𝐴 ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝑦 ∈ (𝐴 ∖ 𝐵)) → (𝑓‘𝑦) ∈ (𝑓 “ (𝐴 ∖ 𝐵))) |
12 | 11 | 3expia 1120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 Fn 𝐴 ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴 ∖ 𝐵) → (𝑓‘𝑦) ∈ (𝑓 “ (𝐴 ∖ 𝐵)))) |
13 | 9, 10, 12 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑦 ∈ (𝐴 ∖ 𝐵) → (𝑓‘𝑦) ∈ (𝑓 “ (𝐴 ∖ 𝐵)))) |
14 | | dff1o3 6722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓:𝐴–1-1-onto→𝑥 ↔ (𝑓:𝐴–onto→𝑥 ∧ Fun ◡𝑓)) |
15 | | imadif 6518 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑓 → (𝑓 “ (𝐴 ∖ 𝐵)) = ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵))) |
16 | 14, 15 | simplbiim 505 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑓 “ (𝐴 ∖ 𝐵)) = ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵))) |
17 | 16 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝐴–1-1-onto→𝑥 → ((𝑓‘𝑦) ∈ (𝑓 “ (𝐴 ∖ 𝐵)) ↔ (𝑓‘𝑦) ∈ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)))) |
18 | 13, 17 | sylibd 238 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑦 ∈ (𝐴 ∖ 𝐵) → (𝑓‘𝑦) ∈ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)))) |
19 | | n0i 4267 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑦) ∈ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅) |
20 | 18, 19 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑦 ∈ (𝐴 ∖ 𝐵) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅)) |
21 | 8, 20 | syl5bir 242 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐴–1-1-onto→𝑥 → ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅)) |
22 | 21 | exlimdv 1936 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅)) |
23 | 22 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ ∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅) |
24 | 7, 23 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅) |
25 | | ssdif0 4297 |
. . . . . . . . . . . . 13
⊢ ((𝑓 “ 𝐴) ⊆ (𝑓 “ 𝐵) ↔ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅) |
26 | 24, 25 | sylnibr 329 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → ¬ (𝑓 “ 𝐴) ⊆ (𝑓 “ 𝐵)) |
27 | | dfpss3 4021 |
. . . . . . . . . . . 12
⊢ ((𝑓 “ 𝐵) ⊊ (𝑓 “ 𝐴) ↔ ((𝑓 “ 𝐵) ⊆ (𝑓 “ 𝐴) ∧ ¬ (𝑓 “ 𝐴) ⊆ (𝑓 “ 𝐵))) |
28 | 6, 26, 27 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑓 “ 𝐵) ⊊ (𝑓 “ 𝐴)) |
29 | | imadmrn 5979 |
. . . . . . . . . . . . . 14
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 |
30 | | f1odm 6720 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–1-1-onto→𝑥 → dom 𝑓 = 𝐴) |
31 | 30 | imaeq2d 5969 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑓 “ dom 𝑓) = (𝑓 “ 𝐴)) |
32 | | f1ofo 6723 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–1-1-onto→𝑥 → 𝑓:𝐴–onto→𝑥) |
33 | | forn 6691 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–onto→𝑥 → ran 𝑓 = 𝑥) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1-onto→𝑥 → ran 𝑓 = 𝑥) |
35 | 29, 31, 34 | 3eqtr3a 2802 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑓 “ 𝐴) = 𝑥) |
36 | 35 | psseq2d 4028 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–1-1-onto→𝑥 → ((𝑓 “ 𝐵) ⊊ (𝑓 “ 𝐴) ↔ (𝑓 “ 𝐵) ⊊ 𝑥)) |
37 | 36 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → ((𝑓 “ 𝐵) ⊊ (𝑓 “ 𝐴) ↔ (𝑓 “ 𝐵) ⊊ 𝑥)) |
38 | 28, 37 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑓 “ 𝐵) ⊊ 𝑥) |
39 | | php2 8994 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ω ∧ (𝑓 “ 𝐵) ⊊ 𝑥) → (𝑓 “ 𝐵) ≺ 𝑥) |
40 | 38, 39 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ω ∧ (𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴)) → (𝑓 “ 𝐵) ≺ 𝑥) |
41 | | nnfi 8950 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) |
42 | | f1of1 6715 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐴–1-1-onto→𝑥 → 𝑓:𝐴–1-1→𝑥) |
43 | | f1ores 6730 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝐴–1-1→𝑥 ∧ 𝐵 ⊆ 𝐴) → (𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵)) |
44 | 42, 3, 43 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵)) |
45 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
46 | 45 | resex 5939 |
. . . . . . . . . . . . 13
⊢ (𝑓 ↾ 𝐵) ∈ V |
47 | | f1oeq1 6704 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑓 ↾ 𝐵) → (𝑦:𝐵–1-1-onto→(𝑓 “ 𝐵) ↔ (𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵))) |
48 | 46, 47 | spcev 3545 |
. . . . . . . . . . . 12
⊢ ((𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵) → ∃𝑦 𝑦:𝐵–1-1-onto→(𝑓 “ 𝐵)) |
49 | | bren 8743 |
. . . . . . . . . . . 12
⊢ (𝐵 ≈ (𝑓 “ 𝐵) ↔ ∃𝑦 𝑦:𝐵–1-1-onto→(𝑓 “ 𝐵)) |
50 | 48, 49 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵) → 𝐵 ≈ (𝑓 “ 𝐵)) |
51 | 44, 50 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≈ (𝑓 “ 𝐵)) |
52 | | endom 8767 |
. . . . . . . . . . . 12
⊢ (𝐵 ≈ (𝑓 “ 𝐵) → 𝐵 ≼ (𝑓 “ 𝐵)) |
53 | | sdomdom 8768 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 “ 𝐵) ≺ 𝑥 → (𝑓 “ 𝐵) ≼ 𝑥) |
54 | | domfi 8975 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ Fin ∧ (𝑓 “ 𝐵) ≼ 𝑥) → (𝑓 “ 𝐵) ∈ Fin) |
55 | 53, 54 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Fin ∧ (𝑓 “ 𝐵) ≺ 𝑥) → (𝑓 “ 𝐵) ∈ Fin) |
56 | 55 | 3adant2 1130 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≼ (𝑓 “ 𝐵) ∧ (𝑓 “ 𝐵) ≺ 𝑥) → (𝑓 “ 𝐵) ∈ Fin) |
57 | | domfi 8975 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 “ 𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓 “ 𝐵)) → 𝐵 ∈ Fin) |
58 | 57 | 3adant3 1131 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 “ 𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓 “ 𝐵) ∧ (𝑓 “ 𝐵) ≺ 𝑥) → 𝐵 ∈ Fin) |
59 | | domsdomtrfi 8988 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ Fin ∧ 𝐵 ≼ (𝑓 “ 𝐵) ∧ (𝑓 “ 𝐵) ≺ 𝑥) → 𝐵 ≺ 𝑥) |
60 | 58, 59 | syld3an1 1409 |
. . . . . . . . . . . . 13
⊢ (((𝑓 “ 𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓 “ 𝐵) ∧ (𝑓 “ 𝐵) ≺ 𝑥) → 𝐵 ≺ 𝑥) |
61 | 56, 60 | syld3an1 1409 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≼ (𝑓 “ 𝐵) ∧ (𝑓 “ 𝐵) ≺ 𝑥) → 𝐵 ≺ 𝑥) |
62 | 52, 61 | syl3an2 1163 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ (𝑓 “ 𝐵) ∧ (𝑓 “ 𝐵) ≺ 𝑥) → 𝐵 ≺ 𝑥) |
63 | 62 | 3expia 1120 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≈ (𝑓 “ 𝐵)) → ((𝑓 “ 𝐵) ≺ 𝑥 → 𝐵 ≺ 𝑥)) |
64 | 41, 51, 63 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ω ∧ (𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴)) → ((𝑓 “ 𝐵) ≺ 𝑥 → 𝐵 ≺ 𝑥)) |
65 | 40, 64 | mpd 15 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ (𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴)) → 𝐵 ≺ 𝑥) |
66 | 65 | exp32 421 |
. . . . . . 7
⊢ (𝑥 ∈ ω → (𝑓:𝐴–1-1-onto→𝑥 → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥))) |
67 | 66 | exlimdv 1936 |
. . . . . 6
⊢ (𝑥 ∈ ω →
(∃𝑓 𝑓:𝐴–1-1-onto→𝑥 → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥))) |
68 | 2, 67 | syl5bi 241 |
. . . . 5
⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥))) |
69 | | ensymfib 8970 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Fin → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) |
70 | 69 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥) → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥)) |
71 | 70 | biimp3ar 1469 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝑥 ≈ 𝐴) |
72 | | endom 8767 |
. . . . . . . . . 10
⊢ (𝑥 ≈ 𝐴 → 𝑥 ≼ 𝐴) |
73 | | sdomdom 8768 |
. . . . . . . . . . . . 13
⊢ (𝐵 ≺ 𝑥 → 𝐵 ≼ 𝑥) |
74 | | domfi 8975 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≼ 𝑥) → 𝐵 ∈ Fin) |
75 | 73, 74 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥) → 𝐵 ∈ Fin) |
76 | 75 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴) → 𝐵 ∈ Fin) |
77 | | sdomdomtrfi 8987 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴) → 𝐵 ≺ 𝐴) |
78 | 76, 77 | syld3an1 1409 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴) → 𝐵 ≺ 𝐴) |
79 | 72, 78 | syl3an3 1164 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≈ 𝐴) → 𝐵 ≺ 𝐴) |
80 | 71, 79 | syld3an3 1408 |
. . . . . . . 8
⊢ ((𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐵 ≺ 𝐴) |
81 | 41, 80 | syl3an1 1162 |
. . . . . . 7
⊢ ((𝑥 ∈ ω ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥) → 𝐵 ≺ 𝐴) |
82 | 81 | 3com23 1125 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥 ∧ 𝐵 ≺ 𝑥) → 𝐵 ≺ 𝐴) |
83 | 82 | 3exp 1118 |
. . . . 5
⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐵 ≺ 𝑥 → 𝐵 ≺ 𝐴))) |
84 | 68, 83 | syldd 72 |
. . . 4
⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴))) |
85 | 84 | rexlimiv 3209 |
. . 3
⊢
(∃𝑥 ∈
ω 𝐴 ≈ 𝑥 → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
86 | 1, 85 | sylbi 216 |
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
87 | 86 | imp 407 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |