MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3 Structured version   Visualization version   GIF version

Theorem php3 9218
Description: Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5363. (Revised by BTernaryTau, 26-Nov-2024.)
Assertion
Ref Expression
php3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php3
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8978 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 bren 8955 . . . . . 6 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
3 pssss 4095 . . . . . . . . . . . . . 14 (𝐵𝐴𝐵𝐴)
4 imass2 6101 . . . . . . . . . . . . . 14 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
53, 4syl 17 . . . . . . . . . . . . 13 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
65adantl 481 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊆ (𝑓𝐴))
7 pssnel 4470 . . . . . . . . . . . . . 14 (𝐵𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵))
8 eldif 3958 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
9 f1ofn 6834 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥𝑓 Fn 𝐴)
10 difss 4131 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵) ⊆ 𝐴
11 fnfvima 7237 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴𝑦 ∈ (𝐴𝐵)) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)))
12113expia 1120 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
139, 10, 12sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
14 dff1o3 6839 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝐴1-1-onto𝑥 ↔ (𝑓:𝐴onto𝑥 ∧ Fun 𝑓))
15 imadif 6632 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝑓 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
1614, 15simplbiim 504 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
1716eleq2d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)) ↔ (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
1813, 17sylibd 238 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
19 n0i 4333 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2018, 19syl6 35 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
218, 20biimtrrid 242 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥 → ((𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2221exlimdv 1935 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2322imp 406 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥 ∧ ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
247, 23sylan2 592 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
25 ssdif0 4363 . . . . . . . . . . . . 13 ((𝑓𝐴) ⊆ (𝑓𝐵) ↔ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2624, 25sylnibr 329 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ (𝑓𝐴) ⊆ (𝑓𝐵))
27 dfpss3 4086 . . . . . . . . . . . 12 ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ ((𝑓𝐵) ⊆ (𝑓𝐴) ∧ ¬ (𝑓𝐴) ⊆ (𝑓𝐵)))
286, 26, 27sylanbrc 582 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ (𝑓𝐴))
29 imadmrn 6069 . . . . . . . . . . . . . 14 (𝑓 “ dom 𝑓) = ran 𝑓
30 f1odm 6837 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → dom 𝑓 = 𝐴)
3130imaeq2d 6059 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ dom 𝑓) = (𝑓𝐴))
32 f1ofo 6840 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴onto𝑥)
33 forn 6808 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto𝑥 → ran 𝑓 = 𝑥)
3432, 33syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝑥 → ran 𝑓 = 𝑥)
3529, 31, 343eqtr3a 2795 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto𝑥 → (𝑓𝐴) = 𝑥)
3635psseq2d 4093 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
3736adantr 480 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
3828, 37mpbid 231 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ 𝑥)
39 php2 9217 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ (𝑓𝐵) ⊊ 𝑥) → (𝑓𝐵) ≺ 𝑥)
4038, 39sylan2 592 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → (𝑓𝐵) ≺ 𝑥)
41 nnfi 9173 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
42 f1of1 6832 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
43 f1ores 6847 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
4442, 3, 43syl2an 595 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
45 vex 3477 . . . . . . . . . . . . . 14 𝑓 ∈ V
4645resex 6029 . . . . . . . . . . . . 13 (𝑓𝐵) ∈ V
47 f1oeq1 6821 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝐵) → (𝑦:𝐵1-1-onto→(𝑓𝐵) ↔ (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵)))
4846, 47spcev 3596 . . . . . . . . . . . 12 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
49 bren 8955 . . . . . . . . . . . 12 (𝐵 ≈ (𝑓𝐵) ↔ ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
5048, 49sylibr 233 . . . . . . . . . . 11 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → 𝐵 ≈ (𝑓𝐵))
5144, 50syl 17 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → 𝐵 ≈ (𝑓𝐵))
52 endom 8981 . . . . . . . . . . . 12 (𝐵 ≈ (𝑓𝐵) → 𝐵 ≼ (𝑓𝐵))
53 sdomdom 8982 . . . . . . . . . . . . . . 15 ((𝑓𝐵) ≺ 𝑥 → (𝑓𝐵) ≼ 𝑥)
54 domfi 9198 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ (𝑓𝐵) ≼ 𝑥) → (𝑓𝐵) ∈ Fin)
5553, 54sylan2 592 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑓𝐵) ≺ 𝑥) → (𝑓𝐵) ∈ Fin)
56553adant2 1130 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → (𝑓𝐵) ∈ Fin)
57 domfi 9198 . . . . . . . . . . . . . . 15 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵)) → 𝐵 ∈ Fin)
58573adant3 1131 . . . . . . . . . . . . . 14 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵 ∈ Fin)
59 domsdomtrfi 9211 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6058, 59syld3an1 1409 . . . . . . . . . . . . 13 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6156, 60syld3an1 1409 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6252, 61syl3an2 1163 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵 ≈ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
63623expia 1120 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵 ≈ (𝑓𝐵)) → ((𝑓𝐵) ≺ 𝑥𝐵𝑥))
6441, 51, 63syl2an 595 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ((𝑓𝐵) ≺ 𝑥𝐵𝑥))
6540, 64mpd 15 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → 𝐵𝑥)
6665exp32 420 . . . . . . 7 (𝑥 ∈ ω → (𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵𝑥)))
6766exlimdv 1935 . . . . . 6 (𝑥 ∈ ω → (∃𝑓 𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵𝑥)))
682, 67biimtrid 241 . . . . 5 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝑥)))
69 ensymfib 9193 . . . . . . . . . . 11 (𝑥 ∈ Fin → (𝑥𝐴𝐴𝑥))
7069adantr 480 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → (𝑥𝐴𝐴𝑥))
7170biimp3ar 1469 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐴𝑥) → 𝑥𝐴)
72 endom 8981 . . . . . . . . . 10 (𝑥𝐴𝑥𝐴)
73 sdomdom 8982 . . . . . . . . . . . . 13 (𝐵𝑥𝐵𝑥)
74 domfi 9198 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
7573, 74sylan2 592 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
76753adant3 1131 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin)
77 sdomdomtrfi 9210 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
7876, 77syld3an1 1409 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
7972, 78syl3an3 1164 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
8071, 79syld3an3 1408 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐴𝑥) → 𝐵𝐴)
8141, 80syl3an1 1162 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐴𝑥) → 𝐵𝐴)
82813com23 1125 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴𝑥𝐵𝑥) → 𝐵𝐴)
83823exp 1118 . . . . 5 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝑥𝐵𝐴)))
8468, 83syldd 72 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝐴)))
8584rexlimiv 3147 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵𝐴))
861, 85sylbi 216 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
8786imp 406 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  wrex 3069  cdif 3945  wss 3948  wpss 3949  c0 4322   class class class wbr 5148  ccnv 5675  dom cdm 5676  ran crn 5677  cres 5678  cima 5679  Fun wfun 6537   Fn wfn 6538  1-1wf1 6540  ontowfo 6541  1-1-ontowf1o 6542  cfv 6543  ωcom 7859  cen 8942  cdom 8943  csdm 8944  Fincfn 8945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1o 8472  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949
This theorem is referenced by:  phpeqd  9221  phpeqdOLD  9231  onomeneq  9234  pssinf  9262  f1finf1o  9277  f1finf1oOLD  9278  findcard3  9291  findcard3OLD  9292  fofinf1o  9333  ackbij1b  10240  fincssdom  10324  fin23lem25  10325  canthp1lem2  10654  pwfseqlem4  10663  uzindi  13954  symggen  19386  pgpssslw  19530  pgpfaclem2  20000  ppiltx  27022  finminlem  35667  lindsenlbs  36947
  Copyright terms: Public domain W3C validator