MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3 Structured version   Visualization version   GIF version

Theorem php3 9123
Description: Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5304. (Revised by BTernaryTau, 26-Nov-2024.)
Assertion
Ref Expression
php3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php3
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8901 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 bren 8882 . . . . . 6 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
3 pssss 4049 . . . . . . . . . . . . . 14 (𝐵𝐴𝐵𝐴)
4 imass2 6053 . . . . . . . . . . . . . 14 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
53, 4syl 17 . . . . . . . . . . . . 13 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
65adantl 481 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊆ (𝑓𝐴))
7 pssnel 4422 . . . . . . . . . . . . . 14 (𝐵𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵))
8 eldif 3913 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
9 f1ofn 6765 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥𝑓 Fn 𝐴)
10 difss 4087 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵) ⊆ 𝐴
11 fnfvima 7169 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴𝑦 ∈ (𝐴𝐵)) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)))
12113expia 1121 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
139, 10, 12sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
14 dff1o3 6770 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝐴1-1-onto𝑥 ↔ (𝑓:𝐴onto𝑥 ∧ Fun 𝑓))
15 imadif 6566 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝑓 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
1614, 15simplbiim 504 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
1716eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)) ↔ (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
1813, 17sylibd 239 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
19 n0i 4291 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2018, 19syl6 35 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
218, 20biimtrrid 243 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥 → ((𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2221exlimdv 1933 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2322imp 406 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥 ∧ ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
247, 23sylan2 593 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
25 ssdif0 4317 . . . . . . . . . . . . 13 ((𝑓𝐴) ⊆ (𝑓𝐵) ↔ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2624, 25sylnibr 329 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ (𝑓𝐴) ⊆ (𝑓𝐵))
27 dfpss3 4040 . . . . . . . . . . . 12 ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ ((𝑓𝐵) ⊆ (𝑓𝐴) ∧ ¬ (𝑓𝐴) ⊆ (𝑓𝐵)))
286, 26, 27sylanbrc 583 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ (𝑓𝐴))
29 imadmrn 6021 . . . . . . . . . . . . . 14 (𝑓 “ dom 𝑓) = ran 𝑓
30 f1odm 6768 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → dom 𝑓 = 𝐴)
3130imaeq2d 6011 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ dom 𝑓) = (𝑓𝐴))
32 f1ofo 6771 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴onto𝑥)
33 forn 6739 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto𝑥 → ran 𝑓 = 𝑥)
3432, 33syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝑥 → ran 𝑓 = 𝑥)
3529, 31, 343eqtr3a 2788 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto𝑥 → (𝑓𝐴) = 𝑥)
3635psseq2d 4047 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
3736adantr 480 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
3828, 37mpbid 232 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ 𝑥)
39 php2 9122 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ (𝑓𝐵) ⊊ 𝑥) → (𝑓𝐵) ≺ 𝑥)
4038, 39sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → (𝑓𝐵) ≺ 𝑥)
41 nnfi 9081 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
42 f1of1 6763 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
43 f1ores 6778 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
4442, 3, 43syl2an 596 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
45 vex 3440 . . . . . . . . . . . . . 14 𝑓 ∈ V
4645resex 5980 . . . . . . . . . . . . 13 (𝑓𝐵) ∈ V
47 f1oeq1 6752 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝐵) → (𝑦:𝐵1-1-onto→(𝑓𝐵) ↔ (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵)))
4846, 47spcev 3561 . . . . . . . . . . . 12 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
49 bren 8882 . . . . . . . . . . . 12 (𝐵 ≈ (𝑓𝐵) ↔ ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
5048, 49sylibr 234 . . . . . . . . . . 11 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → 𝐵 ≈ (𝑓𝐵))
5144, 50syl 17 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → 𝐵 ≈ (𝑓𝐵))
52 endom 8904 . . . . . . . . . . . 12 (𝐵 ≈ (𝑓𝐵) → 𝐵 ≼ (𝑓𝐵))
53 sdomdom 8905 . . . . . . . . . . . . . . 15 ((𝑓𝐵) ≺ 𝑥 → (𝑓𝐵) ≼ 𝑥)
54 domfi 9103 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ (𝑓𝐵) ≼ 𝑥) → (𝑓𝐵) ∈ Fin)
5553, 54sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑓𝐵) ≺ 𝑥) → (𝑓𝐵) ∈ Fin)
56553adant2 1131 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → (𝑓𝐵) ∈ Fin)
57 domfi 9103 . . . . . . . . . . . . . . 15 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵)) → 𝐵 ∈ Fin)
58573adant3 1132 . . . . . . . . . . . . . 14 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵 ∈ Fin)
59 domsdomtrfi 9116 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6058, 59syld3an1 1412 . . . . . . . . . . . . 13 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6156, 60syld3an1 1412 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6252, 61syl3an2 1164 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵 ≈ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
63623expia 1121 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵 ≈ (𝑓𝐵)) → ((𝑓𝐵) ≺ 𝑥𝐵𝑥))
6441, 51, 63syl2an 596 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ((𝑓𝐵) ≺ 𝑥𝐵𝑥))
6540, 64mpd 15 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → 𝐵𝑥)
6665exp32 420 . . . . . . 7 (𝑥 ∈ ω → (𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵𝑥)))
6766exlimdv 1933 . . . . . 6 (𝑥 ∈ ω → (∃𝑓 𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵𝑥)))
682, 67biimtrid 242 . . . . 5 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝑥)))
69 ensymfib 9098 . . . . . . . . . . 11 (𝑥 ∈ Fin → (𝑥𝐴𝐴𝑥))
7069adantr 480 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → (𝑥𝐴𝐴𝑥))
7170biimp3ar 1472 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐴𝑥) → 𝑥𝐴)
72 endom 8904 . . . . . . . . . 10 (𝑥𝐴𝑥𝐴)
73 sdomdom 8905 . . . . . . . . . . . . 13 (𝐵𝑥𝐵𝑥)
74 domfi 9103 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
7573, 74sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
76753adant3 1132 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin)
77 sdomdomtrfi 9115 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
7876, 77syld3an1 1412 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
7972, 78syl3an3 1165 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
8071, 79syld3an3 1411 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐴𝑥) → 𝐵𝐴)
8141, 80syl3an1 1163 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐴𝑥) → 𝐵𝐴)
82813com23 1126 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴𝑥𝐵𝑥) → 𝐵𝐴)
83823exp 1119 . . . . 5 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝑥𝐵𝐴)))
8468, 83syldd 72 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝐴)))
8584rexlimiv 3123 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵𝐴))
861, 85sylbi 217 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
8786imp 406 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  cdif 3900  wss 3903  wpss 3904  c0 4284   class class class wbr 5092  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476   Fn wfn 6477  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  ωcom 7799  cen 8869  cdom 8870  csdm 8871  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876
This theorem is referenced by:  phpeqd  9126  onomeneq  9128  pssinf  9151  f1finf1o  9162  findcard3  9172  fofinf1o  9222  ackbij1b  10132  fincssdom  10217  fin23lem25  10218  canthp1lem2  10547  pwfseqlem4  10556  uzindi  13889  symggen  19349  pgpssslw  19493  pgpfaclem2  19963  ppiltx  27085  finminlem  36302  lindsenlbs  37605
  Copyright terms: Public domain W3C validator