MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3 Structured version   Visualization version   GIF version

Theorem php3 9212
Description: Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5364. (Revised by BTernaryTau, 26-Nov-2024.)
Assertion
Ref Expression
php3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php3
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8972 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 bren 8949 . . . . . 6 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
3 pssss 4096 . . . . . . . . . . . . . 14 (𝐵𝐴𝐵𝐴)
4 imass2 6102 . . . . . . . . . . . . . 14 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
53, 4syl 17 . . . . . . . . . . . . 13 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
65adantl 483 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊆ (𝑓𝐴))
7 pssnel 4471 . . . . . . . . . . . . . 14 (𝐵𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵))
8 eldif 3959 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
9 f1ofn 6835 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥𝑓 Fn 𝐴)
10 difss 4132 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵) ⊆ 𝐴
11 fnfvima 7235 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴𝑦 ∈ (𝐴𝐵)) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)))
12113expia 1122 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
139, 10, 12sylancl 587 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
14 dff1o3 6840 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝐴1-1-onto𝑥 ↔ (𝑓:𝐴onto𝑥 ∧ Fun 𝑓))
15 imadif 6633 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝑓 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
1614, 15simplbiim 506 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
1716eleq2d 2820 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)) ↔ (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
1813, 17sylibd 238 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
19 n0i 4334 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2018, 19syl6 35 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
218, 20biimtrrid 242 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥 → ((𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2221exlimdv 1937 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2322imp 408 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥 ∧ ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
247, 23sylan2 594 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
25 ssdif0 4364 . . . . . . . . . . . . 13 ((𝑓𝐴) ⊆ (𝑓𝐵) ↔ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2624, 25sylnibr 329 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ (𝑓𝐴) ⊆ (𝑓𝐵))
27 dfpss3 4087 . . . . . . . . . . . 12 ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ ((𝑓𝐵) ⊆ (𝑓𝐴) ∧ ¬ (𝑓𝐴) ⊆ (𝑓𝐵)))
286, 26, 27sylanbrc 584 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ (𝑓𝐴))
29 imadmrn 6070 . . . . . . . . . . . . . 14 (𝑓 “ dom 𝑓) = ran 𝑓
30 f1odm 6838 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → dom 𝑓 = 𝐴)
3130imaeq2d 6060 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ dom 𝑓) = (𝑓𝐴))
32 f1ofo 6841 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴onto𝑥)
33 forn 6809 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto𝑥 → ran 𝑓 = 𝑥)
3432, 33syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝑥 → ran 𝑓 = 𝑥)
3529, 31, 343eqtr3a 2797 . . . . . . . . . . . . 13 (𝑓:𝐴1-1-onto𝑥 → (𝑓𝐴) = 𝑥)
3635psseq2d 4094 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
3736adantr 482 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
3828, 37mpbid 231 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ 𝑥)
39 php2 9211 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ (𝑓𝐵) ⊊ 𝑥) → (𝑓𝐵) ≺ 𝑥)
4038, 39sylan2 594 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → (𝑓𝐵) ≺ 𝑥)
41 nnfi 9167 . . . . . . . . . 10 (𝑥 ∈ ω → 𝑥 ∈ Fin)
42 f1of1 6833 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
43 f1ores 6848 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
4442, 3, 43syl2an 597 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
45 vex 3479 . . . . . . . . . . . . . 14 𝑓 ∈ V
4645resex 6030 . . . . . . . . . . . . 13 (𝑓𝐵) ∈ V
47 f1oeq1 6822 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝐵) → (𝑦:𝐵1-1-onto→(𝑓𝐵) ↔ (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵)))
4846, 47spcev 3597 . . . . . . . . . . . 12 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
49 bren 8949 . . . . . . . . . . . 12 (𝐵 ≈ (𝑓𝐵) ↔ ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
5048, 49sylibr 233 . . . . . . . . . . 11 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → 𝐵 ≈ (𝑓𝐵))
5144, 50syl 17 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → 𝐵 ≈ (𝑓𝐵))
52 endom 8975 . . . . . . . . . . . 12 (𝐵 ≈ (𝑓𝐵) → 𝐵 ≼ (𝑓𝐵))
53 sdomdom 8976 . . . . . . . . . . . . . . 15 ((𝑓𝐵) ≺ 𝑥 → (𝑓𝐵) ≼ 𝑥)
54 domfi 9192 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ (𝑓𝐵) ≼ 𝑥) → (𝑓𝐵) ∈ Fin)
5553, 54sylan2 594 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ (𝑓𝐵) ≺ 𝑥) → (𝑓𝐵) ∈ Fin)
56553adant2 1132 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → (𝑓𝐵) ∈ Fin)
57 domfi 9192 . . . . . . . . . . . . . . 15 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵)) → 𝐵 ∈ Fin)
58573adant3 1133 . . . . . . . . . . . . . 14 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵 ∈ Fin)
59 domsdomtrfi 9205 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6058, 59syld3an1 1411 . . . . . . . . . . . . 13 (((𝑓𝐵) ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6156, 60syld3an1 1411 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
6252, 61syl3an2 1165 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵 ≈ (𝑓𝐵) ∧ (𝑓𝐵) ≺ 𝑥) → 𝐵𝑥)
63623expia 1122 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵 ≈ (𝑓𝐵)) → ((𝑓𝐵) ≺ 𝑥𝐵𝑥))
6441, 51, 63syl2an 597 . . . . . . . . 9 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ((𝑓𝐵) ≺ 𝑥𝐵𝑥))
6540, 64mpd 15 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → 𝐵𝑥)
6665exp32 422 . . . . . . 7 (𝑥 ∈ ω → (𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵𝑥)))
6766exlimdv 1937 . . . . . 6 (𝑥 ∈ ω → (∃𝑓 𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵𝑥)))
682, 67biimtrid 241 . . . . 5 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝑥)))
69 ensymfib 9187 . . . . . . . . . . 11 (𝑥 ∈ Fin → (𝑥𝐴𝐴𝑥))
7069adantr 482 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → (𝑥𝐴𝐴𝑥))
7170biimp3ar 1471 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐴𝑥) → 𝑥𝐴)
72 endom 8975 . . . . . . . . . 10 (𝑥𝐴𝑥𝐴)
73 sdomdom 8976 . . . . . . . . . . . . 13 (𝐵𝑥𝐵𝑥)
74 domfi 9192 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
7573, 74sylan2 594 . . . . . . . . . . . 12 ((𝑥 ∈ Fin ∧ 𝐵𝑥) → 𝐵 ∈ Fin)
76753adant3 1133 . . . . . . . . . . 11 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵 ∈ Fin)
77 sdomdomtrfi 9204 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
7876, 77syld3an1 1411 . . . . . . . . . 10 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
7972, 78syl3an3 1166 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝑥𝐴) → 𝐵𝐴)
8071, 79syld3an3 1410 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝐵𝑥𝐴𝑥) → 𝐵𝐴)
8141, 80syl3an1 1164 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐵𝑥𝐴𝑥) → 𝐵𝐴)
82813com23 1127 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴𝑥𝐵𝑥) → 𝐵𝐴)
83823exp 1120 . . . . 5 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝑥𝐵𝐴)))
8468, 83syldd 72 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝐴)))
8584rexlimiv 3149 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵𝐴))
861, 85sylbi 216 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
8786imp 408 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wrex 3071  cdif 3946  wss 3949  wpss 3950  c0 4323   class class class wbr 5149  ccnv 5676  dom cdm 5677  ran crn 5678  cres 5679  cima 5680  Fun wfun 6538   Fn wfn 6539  1-1wf1 6541  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  ωcom 7855  cen 8936  cdom 8937  csdm 8938  Fincfn 8939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943
This theorem is referenced by:  phpeqd  9215  phpeqdOLD  9225  onomeneq  9228  pssinf  9256  f1finf1o  9271  f1finf1oOLD  9272  findcard3  9285  findcard3OLD  9286  fofinf1o  9327  ackbij1b  10234  fincssdom  10318  fin23lem25  10319  canthp1lem2  10648  pwfseqlem4  10657  uzindi  13947  symggen  19338  pgpssslw  19482  pgpfaclem2  19952  ppiltx  26681  finminlem  35203  lindsenlbs  36483
  Copyright terms: Public domain W3C validator