MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin4en1 Structured version   Visualization version   GIF version

Theorem fin4en1 9996
Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin4en1 (𝐴𝐵 → (𝐴 ∈ FinIV𝐵 ∈ FinIV))

Proof of Theorem fin4en1
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 8744 . 2 (𝐴𝐵𝐵𝐴)
2 bren 8701 . . . 4 (𝐵𝐴 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐴)
3 simpr 484 . . . . . . . . . . . 12 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → 𝑥𝐵)
4 f1of1 6699 . . . . . . . . . . . . 13 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
5 pssss 4026 . . . . . . . . . . . . . 14 (𝑥𝐵𝑥𝐵)
6 ssid 3939 . . . . . . . . . . . . . 14 𝐵𝐵
75, 6jctir 520 . . . . . . . . . . . . 13 (𝑥𝐵 → (𝑥𝐵𝐵𝐵))
8 f1imapss 7120 . . . . . . . . . . . . 13 ((𝑓:𝐵1-1𝐴 ∧ (𝑥𝐵𝐵𝐵)) → ((𝑓𝑥) ⊊ (𝑓𝐵) ↔ 𝑥𝐵))
94, 7, 8syl2an 595 . . . . . . . . . . . 12 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → ((𝑓𝑥) ⊊ (𝑓𝐵) ↔ 𝑥𝐵))
103, 9mpbird 256 . . . . . . . . . . 11 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → (𝑓𝑥) ⊊ (𝑓𝐵))
11 imadmrn 5968 . . . . . . . . . . . . . 14 (𝑓 “ dom 𝑓) = ran 𝑓
12 f1odm 6704 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴 → dom 𝑓 = 𝐵)
1312imaeq2d 5958 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → (𝑓 “ dom 𝑓) = (𝑓𝐵))
14 dff1o5 6709 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴 ↔ (𝑓:𝐵1-1𝐴 ∧ ran 𝑓 = 𝐴))
1514simprbi 496 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → ran 𝑓 = 𝐴)
1611, 13, 153eqtr3a 2803 . . . . . . . . . . . . 13 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝐵) = 𝐴)
1716adantr 480 . . . . . . . . . . . 12 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → (𝑓𝐵) = 𝐴)
1817psseq2d 4024 . . . . . . . . . . 11 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → ((𝑓𝑥) ⊊ (𝑓𝐵) ↔ (𝑓𝑥) ⊊ 𝐴))
1910, 18mpbid 231 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → (𝑓𝑥) ⊊ 𝐴)
2019adantrr 713 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → (𝑓𝑥) ⊊ 𝐴)
21 vex 3426 . . . . . . . . . . . . . 14 𝑥 ∈ V
2221f1imaen 8757 . . . . . . . . . . . . 13 ((𝑓:𝐵1-1𝐴𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
234, 5, 22syl2an 595 . . . . . . . . . . . 12 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
2423adantrr 713 . . . . . . . . . . 11 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → (𝑓𝑥) ≈ 𝑥)
25 simprr 769 . . . . . . . . . . 11 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
26 entr 8747 . . . . . . . . . . 11 (((𝑓𝑥) ≈ 𝑥𝑥𝐵) → (𝑓𝑥) ≈ 𝐵)
2724, 25, 26syl2anc 583 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → (𝑓𝑥) ≈ 𝐵)
28 vex 3426 . . . . . . . . . . . 12 𝑓 ∈ V
29 f1oen3g 8709 . . . . . . . . . . . 12 ((𝑓 ∈ V ∧ 𝑓:𝐵1-1-onto𝐴) → 𝐵𝐴)
3028, 29mpan 686 . . . . . . . . . . 11 (𝑓:𝐵1-1-onto𝐴𝐵𝐴)
3130adantr 480 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → 𝐵𝐴)
32 entr 8747 . . . . . . . . . 10 (((𝑓𝑥) ≈ 𝐵𝐵𝐴) → (𝑓𝑥) ≈ 𝐴)
3327, 31, 32syl2anc 583 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → (𝑓𝑥) ≈ 𝐴)
34 fin4i 9985 . . . . . . . . 9 (((𝑓𝑥) ⊊ 𝐴 ∧ (𝑓𝑥) ≈ 𝐴) → ¬ 𝐴 ∈ FinIV)
3520, 33, 34syl2anc 583 . . . . . . . 8 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → ¬ 𝐴 ∈ FinIV)
3635ex 412 . . . . . . 7 (𝑓:𝐵1-1-onto𝐴 → ((𝑥𝐵𝑥𝐵) → ¬ 𝐴 ∈ FinIV))
3736exlimdv 1937 . . . . . 6 (𝑓:𝐵1-1-onto𝐴 → (∃𝑥(𝑥𝐵𝑥𝐵) → ¬ 𝐴 ∈ FinIV))
3837con2d 134 . . . . 5 (𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
3938exlimiv 1934 . . . 4 (∃𝑓 𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
402, 39sylbi 216 . . 3 (𝐵𝐴 → (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
41 relen 8696 . . . . 5 Rel ≈
4241brrelex1i 5634 . . . 4 (𝐵𝐴𝐵 ∈ V)
43 isfin4 9984 . . . 4 (𝐵 ∈ V → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
4442, 43syl 17 . . 3 (𝐵𝐴 → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
4540, 44sylibrd 258 . 2 (𝐵𝐴 → (𝐴 ∈ FinIV𝐵 ∈ FinIV))
461, 45syl 17 1 (𝐴𝐵 → (𝐴 ∈ FinIV𝐵 ∈ FinIV))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  wss 3883  wpss 3884   class class class wbr 5070  dom cdm 5580  ran crn 5581  cima 5583  1-1wf1 6415  1-1-ontowf1o 6417  cen 8688  FinIVcfin4 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-fin4 9974
This theorem is referenced by:  domfin4  9998  isfin4p1  10002
  Copyright terms: Public domain W3C validator