MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin4en1 Structured version   Visualization version   GIF version

Theorem fin4en1 9384
Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin4en1 (𝐴𝐵 → (𝐴 ∈ FinIV𝐵 ∈ FinIV))

Proof of Theorem fin4en1
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 8209 . 2 (𝐴𝐵𝐵𝐴)
2 bren 8169 . . . 4 (𝐵𝐴 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐴)
3 simpr 477 . . . . . . . . . . . 12 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → 𝑥𝐵)
4 f1of1 6319 . . . . . . . . . . . . 13 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
5 pssss 3863 . . . . . . . . . . . . . 14 (𝑥𝐵𝑥𝐵)
6 ssid 3783 . . . . . . . . . . . . . 14 𝐵𝐵
75, 6jctir 516 . . . . . . . . . . . . 13 (𝑥𝐵 → (𝑥𝐵𝐵𝐵))
8 f1imapss 6715 . . . . . . . . . . . . 13 ((𝑓:𝐵1-1𝐴 ∧ (𝑥𝐵𝐵𝐵)) → ((𝑓𝑥) ⊊ (𝑓𝐵) ↔ 𝑥𝐵))
94, 7, 8syl2an 589 . . . . . . . . . . . 12 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → ((𝑓𝑥) ⊊ (𝑓𝐵) ↔ 𝑥𝐵))
103, 9mpbird 248 . . . . . . . . . . 11 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → (𝑓𝑥) ⊊ (𝑓𝐵))
11 imadmrn 5658 . . . . . . . . . . . . . 14 (𝑓 “ dom 𝑓) = ran 𝑓
12 f1odm 6324 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴 → dom 𝑓 = 𝐵)
1312imaeq2d 5648 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → (𝑓 “ dom 𝑓) = (𝑓𝐵))
14 dff1o5 6329 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴 ↔ (𝑓:𝐵1-1𝐴 ∧ ran 𝑓 = 𝐴))
1514simprbi 490 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → ran 𝑓 = 𝐴)
1611, 13, 153eqtr3a 2823 . . . . . . . . . . . . 13 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝐵) = 𝐴)
1716adantr 472 . . . . . . . . . . . 12 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → (𝑓𝐵) = 𝐴)
1817psseq2d 3861 . . . . . . . . . . 11 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → ((𝑓𝑥) ⊊ (𝑓𝐵) ↔ (𝑓𝑥) ⊊ 𝐴))
1910, 18mpbid 223 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → (𝑓𝑥) ⊊ 𝐴)
2019adantrr 708 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → (𝑓𝑥) ⊊ 𝐴)
21 vex 3353 . . . . . . . . . . . . . 14 𝑥 ∈ V
2221f1imaen 8222 . . . . . . . . . . . . 13 ((𝑓:𝐵1-1𝐴𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
234, 5, 22syl2an 589 . . . . . . . . . . . 12 ((𝑓:𝐵1-1-onto𝐴𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
2423adantrr 708 . . . . . . . . . . 11 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → (𝑓𝑥) ≈ 𝑥)
25 simprr 789 . . . . . . . . . . 11 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
26 entr 8212 . . . . . . . . . . 11 (((𝑓𝑥) ≈ 𝑥𝑥𝐵) → (𝑓𝑥) ≈ 𝐵)
2724, 25, 26syl2anc 579 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → (𝑓𝑥) ≈ 𝐵)
28 vex 3353 . . . . . . . . . . . 12 𝑓 ∈ V
29 f1oen3g 8176 . . . . . . . . . . . 12 ((𝑓 ∈ V ∧ 𝑓:𝐵1-1-onto𝐴) → 𝐵𝐴)
3028, 29mpan 681 . . . . . . . . . . 11 (𝑓:𝐵1-1-onto𝐴𝐵𝐴)
3130adantr 472 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → 𝐵𝐴)
32 entr 8212 . . . . . . . . . 10 (((𝑓𝑥) ≈ 𝐵𝐵𝐴) → (𝑓𝑥) ≈ 𝐴)
3327, 31, 32syl2anc 579 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → (𝑓𝑥) ≈ 𝐴)
34 fin4i 9373 . . . . . . . . 9 (((𝑓𝑥) ⊊ 𝐴 ∧ (𝑓𝑥) ≈ 𝐴) → ¬ 𝐴 ∈ FinIV)
3520, 33, 34syl2anc 579 . . . . . . . 8 ((𝑓:𝐵1-1-onto𝐴 ∧ (𝑥𝐵𝑥𝐵)) → ¬ 𝐴 ∈ FinIV)
3635ex 401 . . . . . . 7 (𝑓:𝐵1-1-onto𝐴 → ((𝑥𝐵𝑥𝐵) → ¬ 𝐴 ∈ FinIV))
3736exlimdv 2028 . . . . . 6 (𝑓:𝐵1-1-onto𝐴 → (∃𝑥(𝑥𝐵𝑥𝐵) → ¬ 𝐴 ∈ FinIV))
3837con2d 131 . . . . 5 (𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
3938exlimiv 2025 . . . 4 (∃𝑓 𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
402, 39sylbi 208 . . 3 (𝐵𝐴 → (𝐴 ∈ FinIV → ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
41 relen 8165 . . . . 5 Rel ≈
4241brrelex1i 5328 . . . 4 (𝐵𝐴𝐵 ∈ V)
43 isfin4 9372 . . . 4 (𝐵 ∈ V → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
4442, 43syl 17 . . 3 (𝐵𝐴 → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
4540, 44sylibrd 250 . 2 (𝐵𝐴 → (𝐴 ∈ FinIV𝐵 ∈ FinIV))
461, 45syl 17 1 (𝐴𝐵 → (𝐴 ∈ FinIV𝐵 ∈ FinIV))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  Vcvv 3350  wss 3732  wpss 3733   class class class wbr 4809  dom cdm 5277  ran crn 5278  cima 5280  1-1wf1 6065  1-1-ontowf1o 6067  cen 8157  FinIVcfin4 9355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-er 7947  df-en 8161  df-fin4 9362
This theorem is referenced by:  domfin4  9386  isfin4-3  9390
  Copyright terms: Public domain W3C validator